You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
6.6 KiB
194 lines
6.6 KiB
7 years ago
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
|
||
|
#include <string>
|
||
|
#include "paddle/fluid/framework/lod_tensor.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace framework {
|
||
|
namespace ir {
|
||
|
|
||
|
std::string GenNodeName(const std::string& prefix, const std::string& name) {
|
||
|
return prefix + "/" + name;
|
||
|
}
|
||
|
|
||
|
void BuildPattern(PDPattern* pattern, const std::string& name_scope,
|
||
|
bool with_fc_bias) {
|
||
|
PDNode* x = pattern->NewNode(name_scope, "x")
|
||
|
->assert_is_op_input("mul")
|
||
|
->assert_var_not_persistable();
|
||
|
auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias);
|
||
|
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
|
||
|
patterns::GRU(pattern, name_scope, fc_out);
|
||
|
VLOG(3) << "\n" << pattern->DotString();
|
||
|
}
|
||
|
|
||
|
int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
|
||
|
bool with_fc_bias) {
|
||
|
GraphPatternDetector gpd;
|
||
|
auto* pattern = gpd.mutable_pattern();
|
||
|
|
||
|
BuildPattern(pattern, name_scope, with_fc_bias);
|
||
|
|
||
|
// Create New OpDesc
|
||
|
auto gru_creater = [&](int gru, int x, int weight_x, int weight_h, int bias,
|
||
|
int hidden, int fc_bias) {
|
||
|
#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x);
|
||
|
GET_NODE(x);
|
||
|
GET_NODE(weight_x);
|
||
|
GET_NODE(weight_h);
|
||
|
GET_NODE(bias);
|
||
|
GET_NODE(hidden);
|
||
|
GET_NODE(gru);
|
||
|
|
||
|
OpDesc op_desc;
|
||
|
op_desc.SetType("fusion_gru");
|
||
|
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()});
|
||
|
SET_IN(X, x);
|
||
|
SET_IN(WeightX, weight_x);
|
||
|
SET_IN(WeightH, weight_h);
|
||
|
SET_IN(Bias, bias);
|
||
|
#undef SET_IN
|
||
|
if (with_fc_bias) {
|
||
|
// Add FC-bias with LSTM-bias and create a new weight
|
||
|
PADDLE_ENFORCE(scope);
|
||
|
const std::string& new_bias_var = name_scope + "_bias.new";
|
||
|
auto* bias_var = scope->Var(new_bias_var);
|
||
|
PADDLE_ENFORCE(bias_var);
|
||
|
auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
|
||
|
auto* gru_bias_var = scope->FindVar(bias_n->Name());
|
||
|
PADDLE_ENFORCE(gru_bias_var);
|
||
|
const auto& gru_bias_tenosr = gru_bias_var->Get<framework::LoDTensor>();
|
||
|
bias_tensor->Resize(gru_bias_tenosr.dims());
|
||
|
|
||
|
GET_NODE(fc_bias);
|
||
|
auto* fc_bias_var = scope->FindVar(fc_bias_n->Name());
|
||
|
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
|
||
|
// new bias = fc bias + gru bias
|
||
|
auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace());
|
||
|
for (int i = 0; i < bias_tensor->numel(); i++) {
|
||
|
data[i] =
|
||
|
fc_bias_tensor.data<float>()[i] + gru_bias_tenosr.data<float>()[i];
|
||
|
}
|
||
|
op_desc.SetInput("Bias", {new_bias_var});
|
||
|
}
|
||
|
#undef GET_NODE
|
||
|
|
||
|
op_desc.SetInput("H0", {});
|
||
|
op_desc.SetOutput("Hidden", {hidden_n->Name()});
|
||
|
op_desc.SetAttr("is_reverse", gru_n->Op()->GetAttr("is_reverse"));
|
||
|
// TODO(TJ): This should be a option for infer
|
||
|
op_desc.SetAttr("use_seq", true);
|
||
|
|
||
|
// Create temp variables.
|
||
|
// TODO(TJ): clean code
|
||
|
scope->Var(name_scope + "/ReorderedH0.new")
|
||
|
->GetMutable<framework::LoDTensor>();
|
||
|
scope->Var(name_scope + "/XX.new")->GetMutable<framework::LoDTensor>();
|
||
|
scope->Var(name_scope + "/BatchedInput.new")
|
||
|
->GetMutable<framework::LoDTensor>();
|
||
|
scope->Var(name_scope + "/BatchedOut.new")
|
||
|
->GetMutable<framework::LoDTensor>();
|
||
|
op_desc.SetOutput("ReorderedH0", {name_scope + "/ReorderedH0.new"});
|
||
|
op_desc.SetOutput("XX", {name_scope + "/XX.new"});
|
||
|
op_desc.SetOutput("BatchedInput", {name_scope + "/BatchedInput.new"});
|
||
|
op_desc.SetOutput("BatchedOut", {name_scope + "/BatchedOut.new"});
|
||
|
|
||
|
auto* op = graph->CreateOpNode(&op_desc);
|
||
|
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
|
||
|
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
|
||
|
|
||
|
IR_NODE_LINK_TO(x_n, op);
|
||
|
IR_NODE_LINK_TO(weight_x_n, op);
|
||
|
IR_NODE_LINK_TO(weight_h_n, op);
|
||
|
IR_NODE_LINK_TO(bias_n, op);
|
||
|
IR_NODE_LINK_TO(op, hidden_n);
|
||
|
// h0?
|
||
|
return op;
|
||
|
};
|
||
|
|
||
|
int fusion_count{0};
|
||
|
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
||
|
Graph* g) {
|
||
|
#define GET_NODE(name__) \
|
||
|
std::string name__##key = name_scope + "/" + #name__; \
|
||
|
auto* name__##n = pattern->RetrieveNode(name__##key); \
|
||
|
PADDLE_ENFORCE(name__##n); \
|
||
|
PADDLE_ENFORCE(subgraph.count(name__##n)); \
|
||
|
Node* name__##_n = subgraph.at(name__##n); \
|
||
|
int name__ __attribute__((unused)) = name__##_n->id();
|
||
|
|
||
|
GET_NODE(x);
|
||
|
GET_NODE(w);
|
||
|
GET_NODE(mul);
|
||
|
GET_NODE(fc_out);
|
||
|
GET_NODE(Weight);
|
||
|
GET_NODE(gru);
|
||
|
GET_NODE(Bias);
|
||
|
GET_NODE(Hidden);
|
||
|
|
||
|
if (with_fc_bias) {
|
||
|
GET_NODE(fc_bias);
|
||
|
GET_NODE(elementwise_add);
|
||
|
gru_creater(gru, x, w, Weight, Bias, Hidden, fc_bias);
|
||
|
// Remove unneeded nodes.
|
||
|
std::unordered_set<const Node*> marked_nodes(
|
||
|
{mul_n, gru_n, elementwise_add_n});
|
||
|
GraphSafeRemoveNodes(graph, marked_nodes);
|
||
|
} else {
|
||
|
gru_creater(gru, x, w, Weight, Bias, Hidden, -1);
|
||
|
// Remove unneeded nodes.
|
||
|
std::unordered_set<const Node*> marked_nodes({mul_n, gru_n});
|
||
|
GraphSafeRemoveNodes(graph, marked_nodes);
|
||
|
}
|
||
|
#undef GET_NODE
|
||
|
|
||
|
++fusion_count;
|
||
|
};
|
||
|
|
||
|
gpd(graph, handler);
|
||
|
|
||
|
return fusion_count;
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<ir::Graph> MulGRUFusePass::ApplyImpl(
|
||
|
std::unique_ptr<ir::Graph> graph) const {
|
||
|
FusePassBase::Init(name_scope_, graph.get());
|
||
|
|
||
|
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
|
||
|
false /*with_fc_bias*/);
|
||
|
|
||
|
AddStatis(fusion_count);
|
||
|
return graph;
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<ir::Graph> FCGRUFusePass::ApplyImpl(
|
||
|
std::unique_ptr<ir::Graph> graph) const {
|
||
|
FusePassBase::Init(name_scope_, graph.get());
|
||
|
|
||
|
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
|
||
|
true /*with_fc_bias*/);
|
||
|
|
||
|
AddStatis(fusion_count);
|
||
|
return graph;
|
||
|
}
|
||
|
|
||
|
} // namespace ir
|
||
|
} // namespace framework
|
||
|
} // namespace paddle
|
||
|
|
||
|
REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulGRUFusePass);
|
||
|
REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCGRUFusePass);
|