You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
53 lines
1.9 KiB
53 lines
1.9 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include "paddle/framework/eigen.h"
|
||
|
#include "paddle/framework/op_registry.h"
|
||
|
#include "paddle/platform/transform.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||
|
typename IndexType = Eigen::DenseIndex>
|
||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||
|
|
||
|
template <typename Place, typename T>
|
||
|
class ClipByNormKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
auto max_norm = context.Attr<T>("max_norm");
|
||
|
auto* input = context.Input<Tensor>("X");
|
||
|
auto* output = context.Output<Tensor>("Out");
|
||
|
output->mutable_data<T>(context.GetPlace());
|
||
|
|
||
|
auto x = EigenVector<T>::Flatten(*input);
|
||
|
auto out = EigenVector<T>::Flatten(*output);
|
||
|
auto x_norm = x.square().sum().sqrt();
|
||
|
auto place = context.GetEigenDevice<Place>();
|
||
|
|
||
|
auto temp = (x_norm <= max_norm).template cast<T>().eval();
|
||
|
auto scaling = temp + (static_cast<T>(1) - temp) * max_norm / x_norm;
|
||
|
Eigen::array<int, 1> one_dim{{1}};
|
||
|
Eigen::DSizes<int, 1> m_dsize(input->numel());
|
||
|
out.device(place) = x * scaling.reshape(one_dim).broadcast(m_dsize);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|