You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
5.2 KiB
140 lines
5.2 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/operators/ftrl_op.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
class FTRLOp : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
|
||
|
protected:
|
||
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||
|
"Input(Param) of FTRL should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("SquaredAccumulator"),
|
||
|
"Input(SquaredAccumulator) of FTRL should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("LinearAccumulator"),
|
||
|
"Input(LinearAccumulator) of FTRL should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||
|
"Input(Grad) of FTRL should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
||
|
"Input(LearningRate) of FTRL should not be null.");
|
||
|
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||
|
"Output(ParamOut) of FTRL should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("SquaredAccumOut"),
|
||
|
"Output(SquaredAccumOut) of FTRL should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("LinearAccumOut"),
|
||
|
"Output(LinearAccumOut) of FTRL should not be null.");
|
||
|
|
||
|
auto param_dim = ctx->GetInputDim("Param");
|
||
|
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"),
|
||
|
"Two input of FTRL Op's dimension must be same.");
|
||
|
|
||
|
auto lr_dim = ctx->GetInputDim("LearningRate");
|
||
|
PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
|
||
|
"Learning Rate should be a scalar.");
|
||
|
|
||
|
ctx->SetOutputDim("ParamOut", param_dim);
|
||
|
ctx->SetOutputDim("SquaredAccumOut", param_dim);
|
||
|
ctx->SetOutputDim("LinearAccumOut", param_dim);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class FTRLOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
FTRLOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||
|
AddInput("Param",
|
||
|
"(Tensor, default Tensor<float>) "
|
||
|
"Input parameter value that has to be updated.");
|
||
|
AddInput("SquaredAccumulator",
|
||
|
"(Tensor, default Tensor<float>) "
|
||
|
"Accumulator that accumulates squared gradients.");
|
||
|
AddInput("LinearAccumulator",
|
||
|
"(Tensor, default Tensor<float>) "
|
||
|
"Accumulator that accumulates linear gradients.");
|
||
|
AddInput("Grad",
|
||
|
"(Tensor, default Tensor<float>) "
|
||
|
"Input gradient of the parameter.");
|
||
|
AddInput("LearningRate",
|
||
|
"(Tensor, default Tensor<float>) "
|
||
|
"The learning rate should be a tensor of size 1.");
|
||
|
|
||
|
AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
|
||
|
AddOutput("SquaredAccumOut",
|
||
|
"(Tensor) Output accumulated squared"
|
||
|
" gradients.");
|
||
|
AddOutput("LinearAccumOut",
|
||
|
"(Tensor) Output accumulated linear"
|
||
|
" gradients.");
|
||
|
|
||
|
AddAttr<float>("l1",
|
||
|
"(float, default 0.0) "
|
||
|
"L1 regularization strength.")
|
||
|
.SetDefault(0.0f);
|
||
|
AddAttr<float>("l2",
|
||
|
"(float, default 0.0) "
|
||
|
"L2 regularization strength.")
|
||
|
.SetDefault(0.0f);
|
||
|
AddAttr<float>("lr_power",
|
||
|
"(float, default -0.5f) "
|
||
|
"Learning Rate Power.")
|
||
|
.SetDefault(-0.5f);
|
||
|
AddComment(R"DOC(
|
||
|
FTRL (Follow The Regularized Leader) Operator.
|
||
|
|
||
|
Optimizer that implements the FTRL algorithm:
|
||
|
|
||
|
$$
|
||
|
new\_accum = squared\_accum + grad^2 \\
|
||
|
if (lr\_power == -0.5) {
|
||
|
linear\_accum += grad - (\surd(new\_accum) - \surd(squared\_accum)) /
|
||
|
(learning\_rate * param) \\
|
||
|
} else {
|
||
|
linear\_accum += grad -
|
||
|
(new\_accum^{-lr\_power} - accum^{-lr\_power}) /
|
||
|
(learning\_rate * param) \\
|
||
|
}
|
||
|
|
||
|
x = (l1 * sign(linear\_accum) - linear\_accum)
|
||
|
if (lr\_power == -0.5) {
|
||
|
y = \frac{\surd(new\_accum)}{learning\_rate} + (2 * l2) \\
|
||
|
pre\_shrink = \frac{x}{y} \\
|
||
|
param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\
|
||
|
} else {
|
||
|
y = \frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2) \\
|
||
|
pre\_shrink = \frac{x}{y} \\
|
||
|
param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\
|
||
|
}
|
||
|
squared\_accum += grad^2;
|
||
|
$$
|
||
|
|
||
|
The paper that proposed Follow The Regularized Leader (FTRL):
|
||
|
(https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)
|
||
|
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OP_WITHOUT_GRADIENT(ftrl, ops::FTRLOp, ops::FTRLOpMaker);
|
||
|
REGISTER_OP_CPU_KERNEL(ftrl,
|
||
|
ops::FTRLOpKernel<paddle::platform::CPUPlace, float>);
|