You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
4.2 KiB
104 lines
4.2 KiB
8 years ago
|
|
||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/operators/rank_loss_op.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
class RankLossOp : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||
|
const framework::VariableNameMap &outputs,
|
||
|
const framework::AttributeMap &attrs)
|
||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||
|
|
||
|
protected:
|
||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||
|
// input check
|
||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("P"), "Input(P) shouldn't be null");
|
||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oi"), "Input(Oi) shouldn't be null");
|
||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oj"), "Input(Oj) shouldn't be null");
|
||
|
auto p_dims = ctx.Input<framework::Tensor>("P")->dims();
|
||
|
auto oi_dims = ctx.Input<framework::Tensor>("Oi")->dims();
|
||
|
auto oj_dims = ctx.Input<framework::Tensor>("Oj")->dims();
|
||
|
PADDLE_ENFORCE_EQ(oi_dims, oj_dims,
|
||
|
"Input(Oi) and Input(Oj) must have the same size");
|
||
|
PADDLE_ENFORCE_EQ(
|
||
|
p_dims, oi_dims,
|
||
|
"Input(P) must have the same size with Input(Oi) & Input(Oj)");
|
||
|
ctx.Output<framework::Tensor>("Out")->Resize(p_dims);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
RankLossOpMaker(framework::OpProto *proto,
|
||
|
framework::OpAttrChecker *op_checker)
|
||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||
|
AddInput("P", "The first input of RankLoss operator.");
|
||
|
AddInput("Oi", "The second input of RankLoss operator.");
|
||
|
AddInput("Oj", "The third input of RankLoss operator.");
|
||
|
AddOutput("Out", "The output tensor of RankLoss operator.");
|
||
|
AddComment(R"DOC(RankLoss operator
|
||
|
|
||
|
A rank loss operator for learning to rank (LTR) task. This operator contains
|
||
|
three inputs: P, Oi, and Oj, and the rank cost can be expressed as
|
||
|
|
||
|
\f[
|
||
|
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
|
||
|
o_{i,j} = o_i - o_j \\
|
||
|
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
|
||
|
\f]
|
||
|
|
||
|
[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
|
||
|
Rank useing Gradient Descent.
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class RankLossGradOp : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
RankLossGradOp(const std::string &type,
|
||
|
const framework::VariableNameMap &inputs,
|
||
|
const framework::VariableNameMap &outputs,
|
||
|
const framework::AttributeMap &attrs)
|
||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||
|
|
||
|
protected:
|
||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("P"), "Input(P) shouldn't be null.");
|
||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oi"), "Input(Oi) shouldn't be null.");
|
||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oj"), "Input(Oj) shouldn't be null.");
|
||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||
|
"Input(Out@GRAD) shouldn't be null.");
|
||
|
auto dims = ctx.Input<framework::Tensor>("P")->dims();
|
||
|
ctx.Output<framework::Tensor>(framework::GradVarName("P"))->Resize(dims);
|
||
|
ctx.Output<framework::Tensor>(framework::GradVarName("Oi"))->Resize(dims);
|
||
|
ctx.Output<framework::Tensor>(framework::GradVarName("Oj"))->Resize(dims);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
namespace ops = paddle::operators;
|
||
|
|
||
|
REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad,
|
||
|
ops::RankLossGradOp);
|
||
|
REGISTER_OP_CPU_KERNEL(rank_loss,
|
||
|
ops::RankLossKernel<paddle::platform::CPUPlace, float>);
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
rank_loss_grad, ops::RankLossGradKernel<paddle::platform::CPUPlace, float>);
|