You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/conv_transpose_op.h

303 lines
12 KiB

7 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
7 years ago
#include "paddle/operators/math/im2col.h"
7 years ago
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;
// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
7 years ago
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DTransposeOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
7 years ago
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv3DTransposeOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
7 years ago
class ConvTransposeOp : public framework::OperatorWithKernel {
7 years ago
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
7 years ago
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
7 years ago
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
template <typename Place, typename T>
class GemmConvTransposeKernel : public framework::OpKernel<T> {
7 years ago
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
// The filter will be reshaped, so it should not be constant pointer
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* output = context.Output<Tensor>("Output");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
7 years ago
// TODO(Zhuoyuan): Paddings can be added in future.
// groups will alway be disabled in conv2dtranspose.
int dilaiton_d = 1;
int dilation_h = 1;
int dilation_w = 1;
7 years ago
const int batch_size = static_cast<int>(input->dims()[0]);
7 years ago
// input_shape_vec: {h, w} or {d, h, w}
std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
filter_shape_vec.erase(filter_shape_vec.begin(),
filter_shape_vec.begin() + 2);
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std::vector<int64_t> col_shape_vec;
col_shape_vec.push_back(output->dims()[1]);
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
filter_shape_vec.end());
col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
input_shape_vec.end());
DDim col_shape(framework::make_ddim(col_shape_vec));
7 years ago
// use col_matrix_shape in the gemm calculation
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
7 years ago
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix;
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim output_shape =
framework::slice_ddim(output->dims(), 1, output->dims().size());
7 years ago
// input matrix size: (m, h * w) or (m, d * h * w)
DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
// filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
7 years ago
filter.Resize(filter_matrix_shape);
output->mutable_data<T>(context.GetPlace());
7 years ago
math::SetConstant<Place, T> set_zero;
set_zero(context.device_context(), output, static_cast<T>(0));
7 years ago
// convolution transpose: gemm + col2im or col2vol (similar to conv-backward
// on input)
7 years ago
for (int i = 0; i < batch_size; i++) {
// batch with size (m, h * w) or (m, d * h * w)
7 years ago
Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
7 years ago
Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
7 years ago
math::matmul<Place, T>(context.device_context(), filter, true,
7 years ago
input_batch, false, static_cast<T>(1.0),
&col_matrix, static_cast<T>(0.0));
if (filter_shape_vec.size() == 2) {
// col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
math::Col2ImFunctor<math::ColFormat::kCFO, Place, T> col2im;
col2im(context.device_context(), output_batch, col, dilation_h,
dilation_w, strides[0], strides[1], 0, 0, 0, 0);
} else if (filter_shape_vec.size() == 3) {
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
math::Col2VolFunctor<Place, T> col2vol;
col2vol(context.device_context(), output_batch, col, dilaiton_d,
dilation_h, dilation_w, strides[0], strides[1], strides[2], 0,
0, 0);
}
7 years ago
}
}
};
template <typename Place, typename T>
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
7 years ago
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
if ((!input_grad) && (!filter_grad)) return;
7 years ago
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// Actually, no paddings and groups allowed in conv transpose.
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
int dilaiton_d = 1;
int dilation_h = 1;
int dilation_w = 1;
7 years ago
const int batch_size = static_cast<int>(input->dims()[0]);
7 years ago
// input_shape_vec: {h, w} or {d, h, w}
std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
filter_shape_vec.erase(filter_shape_vec.begin(),
filter_shape_vec.begin() + 2);
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std::vector<int64_t> col_shape_vec;
col_shape_vec.push_back(output_grad->dims()[1]);
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
filter_shape_vec.end());
col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
input_shape_vec.end());
DDim col_shape(framework::make_ddim(col_shape_vec));
7 years ago
// use col_matrix_shape in the gemm calculation
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
7 years ago
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
output_grad->dims().size());
7 years ago
// input matrix size: (m, h * w) or (m, d * h * w)
DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
7 years ago
// filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
7 years ago
filter.Resize(filter_matrix_shape);
// convolution transpose grad on input:
// im2col + gemm (similar to conv-forward)
// input need to compute gradient
7 years ago
if (input_grad || filter_grad) {
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
7 years ago
Tensor col_matrix;
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
7 years ago
Tensor filter_grad_;
math::SetConstant<Place, T> set_zero;
7 years ago
7 years ago
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
set_zero(context.device_context(), input_grad, static_cast<T>(0));
}
if (filter_grad) { // filter size (m, c, k_h, k_w)
filter_grad->mutable_data<T>(context.GetPlace());
set_zero(context.device_context(), filter_grad, static_cast<T>(0));
filter_grad_ = *filter_grad;
filter_grad_.Resize(filter_matrix_shape);
7 years ago
}
7 years ago
for (int i = 0; i < batch_size; i++) {
// batch with size (c, o_h * o_w)
7 years ago
Tensor output_grad_batch =
output_grad->Slice(i, i + 1).Resize(output_shape);
if (filter_shape_vec.size() == 2) {
// im2col: dy -> col matrix
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
im2col(context.device_context(), output_grad_batch, col, dilation_h,
dilation_w, strides[0], strides[1], paddings[0], paddings[0],
paddings[1], paddings[1]);
} else if (filter_shape_vec.size() == 3) {
// vol2col: dy -> col_matrix
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
math::Vol2ColFunctor<Place, T> vol2col;
vol2col(context.device_context(), output_grad_batch, col, dilaiton_d,
dilation_h, dilation_w, strides[0], strides[1], strides[2],
paddings[0], paddings[1], paddings[2]);
}
7 years ago
7 years ago
if (input_grad) {
// batch with size (m, h, w)
Tensor input_grad_batch =
input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
// gemm: dx = filter * dy
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
// or
7 years ago
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w)
math::matmul<Place, T>(context.device_context(), filter, false,
col_matrix, false, static_cast<T>(1.0),
&input_grad_batch, static_cast<T>(0.0));
}
if (filter_grad) {
// input batch
Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// gemm: d_filter = x * dy^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
// or
7 years ago
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w)
math::matmul<Place, T>(context.device_context(), in_batch, false,
col_matrix, true, static_cast<T>(1.0),
&filter_grad_, static_cast<T>(1.0));
}
7 years ago
}
}
}
};
} // namespace operators
} // namespace paddle