You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.5 KiB
170 lines
5.5 KiB
7 years ago
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include <vector>
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
class FlattenOpInferShape : public framework::InferShapeBase {
|
||
|
public:
|
||
|
void operator()(framework::InferShapeContext *ctx) const override {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||
|
"Input (X) of Flatten op should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||
|
"Output (Output) of Flatten op should not be null.");
|
||
|
const auto &axis = ctx->Attrs().Get<int>("axis");
|
||
|
const auto &in_dims = ctx->GetInputDim("X");
|
||
|
PADDLE_ENFORCE(axis >= 0, "The axis should be greater than or equal to 0.");
|
||
|
PADDLE_ENFORCE(
|
||
|
axis <= in_dims.size(),
|
||
|
"The axis should be less than or equal to input tensor's rank.");
|
||
|
|
||
|
const auto &out_dims = GetOutputShape(axis, in_dims);
|
||
|
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
|
||
|
if (in_dims[0] == out_dims[0]) {
|
||
|
// Only pass LoD when the first dimension of output and Input(X)
|
||
|
// are the same.
|
||
|
ctx->ShareLoD("X", "Out");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static std::vector<int32_t> GetOutputShape(const int axis,
|
||
|
const framework::DDim &in_dims) {
|
||
|
int64_t outer = 1, inner = 1;
|
||
|
for (int i = 0; i < in_dims.size(); ++i) {
|
||
|
if (i < axis) {
|
||
|
outer *= in_dims[i];
|
||
|
} else {
|
||
|
inner *= in_dims[i];
|
||
|
}
|
||
|
}
|
||
|
std::vector<int32_t> out_shape(2);
|
||
|
out_shape[0] = outer;
|
||
|
out_shape[1] = inner;
|
||
|
return out_shape;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class FlattenOp : public framework::OperatorBase {
|
||
|
public:
|
||
|
using OperatorBase::OperatorBase;
|
||
|
|
||
|
private:
|
||
|
void RunImpl(const framework::Scope &scope,
|
||
|
const platform::Place &place) const override {
|
||
|
auto &axis = Attr<int>("axis");
|
||
|
auto in_dims =
|
||
|
scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
||
|
const auto &out_dims = FlattenOpInferShape::GetOutputShape(axis, in_dims);
|
||
|
|
||
|
framework::AttributeMap attrs;
|
||
|
attrs["shape"] = out_dims;
|
||
|
attrs["inplace"] = false;
|
||
|
// Invoke Reshape Op
|
||
|
auto reshape_op = framework::OpRegistry::CreateOp(
|
||
|
"reshape", {{"X", {Input("X")}}, {"Shape", {}}},
|
||
|
{{"Out", {Output("Out")}}}, attrs);
|
||
|
reshape_op->Run(scope, place);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
void Make() override {
|
||
|
AddInput("X", "(Tensor) A tensor of rank >= axis.");
|
||
|
AddOutput("Out",
|
||
|
"A 2D tensor is reshaped input tensor. The input dimensions"
|
||
|
"up to axis are flattened to the outer dimension of the output"
|
||
|
"and the remaining input dimensions are flattened into the inner"
|
||
|
"dimension of the output.");
|
||
|
AddAttr<int>("axis",
|
||
|
"(int)"
|
||
|
"Indicate up to which input dimensions (exclusive) should be"
|
||
|
"flattened to the outer dimension of the output. The value"
|
||
|
"for axis must be in the range [0, R], where R is the rank of"
|
||
|
"the input tensor. When axis = 0, the shape of the output"
|
||
|
"tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
|
||
|
"input tensor is (d_0, d_1, ... d_n).")
|
||
|
.SetDefault(1);
|
||
|
AddComment(R"DOC(
|
||
|
Flatten Operator
|
||
|
|
||
|
Flattens the input tensor into a 2D matrix.
|
||
|
|
||
|
Examples:
|
||
|
Case 1:
|
||
|
Given
|
||
|
X.shape = (3, 100, 100, 4)
|
||
|
and
|
||
|
axis = 2
|
||
|
We get:
|
||
|
Out.shape = (3 * 100, 4 * 100)
|
||
|
|
||
|
Case 2:
|
||
|
Given
|
||
|
X.shape = (3, 100, 100, 4)
|
||
|
and
|
||
|
axis = 0
|
||
|
We get:
|
||
|
Out.shape = (1, 3 * 100 * 100 * 4)
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class FlattenGradInferShape : public framework::InferShapeBase {
|
||
|
public:
|
||
|
void operator()(framework::InferShapeContext *context) const override {
|
||
|
context->SetOutputDim(framework::GradVarName("X"),
|
||
|
context->GetInputDim("X"));
|
||
|
context->ShareLoD("X", framework::GradVarName("X"));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class FlattenGradOp : public framework::OperatorBase {
|
||
|
public:
|
||
|
using OperatorBase::OperatorBase;
|
||
|
|
||
|
private:
|
||
|
void RunImpl(const framework::Scope &scope,
|
||
|
const platform::Place &place) const override {
|
||
|
auto dx_name = Output(framework::GradVarName("X"));
|
||
|
auto dout_name = Input(framework::GradVarName("Out"));
|
||
|
auto in_dims =
|
||
|
scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
||
|
framework::AttributeMap attrs;
|
||
|
attrs["shape"] = framework::vectorize2int(in_dims);
|
||
|
attrs["inplace"] = false;
|
||
|
|
||
|
auto reshape_op = framework::OpRegistry::CreateOp(
|
||
|
"reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
|
||
|
attrs);
|
||
|
reshape_op->Run(scope, place);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
USE_OP(reshape);
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
|
||
|
ops::FlattenOpInferShape,
|
||
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
||
|
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp, ops::FlattenGradInferShape);
|