You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
6.6 KiB
180 lines
6.6 KiB
8 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "Layer.h"
|
||
|
#include "paddle/math/Matrix.h"
|
||
|
#include "paddle/math/Vector.h"
|
||
|
#include "paddle/utils/Logging.h"
|
||
|
#include "paddle/utils/Stat.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
|
||
|
class SubNestedSequenceLayer : public Layer {
|
||
|
public:
|
||
|
explicit SubNestedSequenceLayer(const LayerConfig& config) : Layer(config) {}
|
||
|
|
||
|
bool init(const LayerMap& layerMap,
|
||
|
const ParameterMap& parameterMap) override;
|
||
|
|
||
|
void forward(PassType passType) override;
|
||
|
void backward(const UpdateCallback& callback = nullptr) override;
|
||
|
|
||
|
private:
|
||
|
void checkInputs(const Argument& inputSeq, const Argument& seqScores);
|
||
|
void calSelectedCols(const Argument& scores,
|
||
|
const int* subSeqStartPos,
|
||
|
size_t topK);
|
||
|
void partialSortIndex(const std::vector<real>& values,
|
||
|
int k,
|
||
|
std::vector<size_t>& indices);
|
||
|
void buildOutputSeqInfo();
|
||
|
|
||
|
std::vector<int> outSeqStartInfo_;
|
||
|
std::vector<int> outSubSeqStartInfo_;
|
||
|
|
||
|
MatrixPtr scoreOverInputSeq_;
|
||
|
|
||
|
// rowIdx_ and selectedRows_ actually share a same memory.
|
||
|
IVectorPtr rowIndice_;
|
||
|
std::vector<int> selectedRows_;
|
||
|
};
|
||
|
|
||
|
REGISTER_LAYER(sub_nested_seq, SubNestedSequenceLayer);
|
||
|
|
||
|
bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
|
||
|
const ParameterMap& parameterMap) {
|
||
|
/* Initialize the basic parent class */
|
||
|
Layer::init(layerMap, parameterMap);
|
||
|
CHECK_EQ(2U, inputLayers_.size());
|
||
|
setNeedSequenceInfo(false);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void SubNestedSequenceLayer::checkInputs(const Argument& inputSeq,
|
||
|
const Argument& seqScores) {
|
||
|
CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer "
|
||
|
<< "must be a nested sequence.";
|
||
|
CHECK(seqScores.hasSeq())
|
||
|
<< "The second input of SubNestSequence layer must be a sequence.";
|
||
|
CHECK_EQ(seqScores.value->getWidth(), 1U)
|
||
|
<< "The second input of SubNestedSequenceLayer is scores "
|
||
|
<< "over each sequence in a nested sequence, "
|
||
|
<< "so its size should be 1.";
|
||
|
CHECK_EQ(inputSeq.getNumSubSequences(), seqScores.value->getHeight())
|
||
|
<< "The second input of SubNestedSequenceLayer is scores "
|
||
|
<< "over each sequence in a nested sequence, so its height should be "
|
||
|
<< "equal to number of sequence in the first input.";
|
||
|
}
|
||
|
|
||
|
void SubNestedSequenceLayer::partialSortIndex(const std::vector<real>& values,
|
||
|
int k,
|
||
|
std::vector<size_t>& indices) {
|
||
|
CHECK_GE(values.size(), k);
|
||
|
indices.resize(values.size(), 0);
|
||
|
std::iota(begin(indices), end(indices), 0U);
|
||
|
std::partial_sort(begin(indices),
|
||
|
begin(indices) + k,
|
||
|
end(indices),
|
||
|
[&](size_t a, size_t b) { return values[a] > values[b]; });
|
||
|
}
|
||
|
|
||
|
void SubNestedSequenceLayer::calSelectedCols(const Argument& scores,
|
||
|
const int* subSeqStartPos,
|
||
|
size_t topK) {
|
||
|
selectedRows_.clear();
|
||
|
outSubSeqStartInfo_.resize(1, 0);
|
||
|
outSeqStartInfo_.resize(1, 0);
|
||
|
|
||
|
real* seqScores = nullptr;
|
||
|
if (useGpu_) {
|
||
|
Matrix::resizeOrCreate(scoreOverInputSeq_,
|
||
|
scores.value->getHeight(),
|
||
|
scores.value->getWidth(),
|
||
|
false /* trans */,
|
||
|
false /* useGpu */);
|
||
|
scoreOverInputSeq_->copyFrom(*scores.value);
|
||
|
seqScores = scoreOverInputSeq_->getData();
|
||
|
} else {
|
||
|
seqScores = scores.value->getData();
|
||
|
}
|
||
|
|
||
|
int* scoreSeqStartPos = scores.sequenceStartPositions->getMutableData(false);
|
||
|
for (int i = 0; i < scores.getNumSequences(); ++i) {
|
||
|
int seqLen = scoreSeqStartPos[i + 1] - scoreSeqStartPos[i];
|
||
|
int selectedSeqNum = std::min(static_cast<int>(config_.top_k()), seqLen);
|
||
|
|
||
|
std::vector<size_t> sortedIdx;
|
||
|
partialSortIndex(std::vector<real>(seqScores + scoreSeqStartPos[i],
|
||
|
seqScores + scoreSeqStartPos[i + 1]),
|
||
|
selectedSeqNum,
|
||
|
sortedIdx);
|
||
|
|
||
|
for (int j = 0; j < selectedSeqNum; ++j) {
|
||
|
int begPos = subSeqStartPos[scoreSeqStartPos[i] + sortedIdx[j]];
|
||
|
int endPos = subSeqStartPos[scoreSeqStartPos[i] + sortedIdx[j] + 1];
|
||
|
for (int m = begPos; m < endPos; ++m) selectedRows_.push_back(m);
|
||
|
outSubSeqStartInfo_.push_back(outSubSeqStartInfo_.back() + endPos -
|
||
|
begPos);
|
||
|
}
|
||
|
outSeqStartInfo_.push_back(outSubSeqStartInfo_.back());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SubNestedSequenceLayer::buildOutputSeqInfo() {
|
||
|
Argument& output = getOutput();
|
||
|
|
||
|
ICpuGpuVector::resizeOrCreate(
|
||
|
output.sequenceStartPositions, outSeqStartInfo_.size(), false);
|
||
|
output.sequenceStartPositions->copyFrom(
|
||
|
outSeqStartInfo_.data(), outSeqStartInfo_.size(), false);
|
||
|
|
||
|
ICpuGpuVector::resizeOrCreate(
|
||
|
output.subSequenceStartPositions, outSubSeqStartInfo_.size(), false);
|
||
|
output.subSequenceStartPositions->copyFrom(
|
||
|
outSubSeqStartInfo_.data(), outSubSeqStartInfo_.size(), false);
|
||
|
}
|
||
|
|
||
|
void SubNestedSequenceLayer::forward(PassType passType) {
|
||
|
Layer::forward(passType);
|
||
|
const Argument& inputSeq = getInput(0);
|
||
|
const Argument& seqScores = getInput(1);
|
||
|
|
||
|
checkInputs(inputSeq, seqScores);
|
||
|
|
||
|
calSelectedCols(seqScores,
|
||
|
inputSeq.subSequenceStartPositions->getMutableData(false),
|
||
|
config_.top_k());
|
||
|
resetOutput(selectedRows_.size(), getSize());
|
||
|
buildOutputSeqInfo();
|
||
|
|
||
|
if (useGpu_) {
|
||
|
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
|
||
|
rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size());
|
||
|
} else {
|
||
|
rowIndice_ =
|
||
|
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
|
||
|
}
|
||
|
|
||
|
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
|
||
|
}
|
||
|
|
||
|
void SubNestedSequenceLayer::backward(const UpdateCallback& callback) {
|
||
|
MatrixPtr inputGrad1 = getInputGrad(0);
|
||
|
MatrixPtr outputGrad = getOutputGrad();
|
||
|
|
||
|
if (inputGrad1) outputGrad->addToRows(*inputGrad1, *rowIndice_);
|
||
|
}
|
||
|
|
||
|
} // namespace paddle
|