You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/lookup_table_op.h

248 lines
9.5 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
7 years ago
constexpr int64_t kNoPadding = -1;
template <typename T>
class LookupTableKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *ids_t = context.Input<LoDTensor>("Ids"); // int tensor
auto *output_t = context.Output<LoDTensor>("Out"); // float tensor
auto *table_var = context.InputVar("W");
Add dygraph execution context (#20157) * add_dygraph_execution_context * add dygraph infershape context and execution context; test=develop * fix imperative bug; test=develop * remove inputs outputs interface from execution context, because it have same function with inputNames; test=develop * remove tracer_test ctest; test=develop * fix split op bug; test=develop * fix unitests bug; test=develop * fix distribute test bug; test=develop * fix ngraph compile bug; test=develop * fix grad maker bug; test=develop * fix load op bugs; test=develop * fix operator.cc construct bug; test=develop * remove useless name find in operator; test=develop * add tracer_test; test=develop * fix concat, split bug; test=develop * remove tracer_test unitest; test=develop * fix attribute check bug; test=develop * add test code to fix converage; test=develop * remove useless code, change check backward input in engin; test=develop * unlock var type infer shape;test=develop * add ShareAllLoD api; test=develop * add dygraph infershape context unitest; test=develop * remove increase and decrease lod in dygraph; test=develop * addd override; test=develop * fix increase descrease lod; test=develop * fix paddle_enforce; test=develop * disable lod op dygraph check; test=develop * fix paddle enforce error; test=develop * add comment for op_registry and OperatorBase; test=develop * optimize the comment of op_registry; test=develop * fix format of comment; test=develop * fix format of comment; test=develop * optimize the format of comment; test=develop * optimize the format of the comment; test=develop * optimize comment of op_registry; test=develop
5 years ago
auto id_name = context.InputNames("Ids").front();
auto embedding_name = context.InputNames("W").front();
auto out_name = context.OutputNames("Out").front();
int64_t padding_idx = context.Attr<int64_t>("padding_idx");
bool is_test = context.Attr<bool>("is_test");
int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
int64_t ids_numel = ids_t->numel();
if (table_var->IsType<LoDTensor>()) {
auto *table_t = context.Input<LoDTensor>("W");
int64_t row_number = table_t->dims()[0];
int64_t row_width = table_t->dims()[1];
auto *table = table_t->data<T>();
auto *output = output_t->mutable_data<T>(context.GetPlace());
for (int64_t i = 0; i < ids_numel; ++i) {
if (padding_idx != kNoPadding && ids[i] == padding_idx) {
memset(output + i * row_width, 0, row_width * sizeof(T));
} else {
PADDLE_ENFORCE_LT(
ids[i], row_number,
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
row_number, ids[i]));
PADDLE_ENFORCE_GE(
ids[i], 0,
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
row_number, ids[i]));
memcpy(output + i * row_width, table + ids[i] * row_width,
row_width * sizeof(T));
}
}
} else if (table_var->IsType<SelectedRows>()) {
const auto &table_t = table_var->Get<SelectedRows>();
int64_t row_width = table_t.value().dims()[1];
const auto *table = table_t.value().data<T>();
auto *output = output_t->mutable_data<T>(context.GetPlace());
auto input_data_type = table_t.value().type();
for (int64_t i = 0; i < ids_numel; ++i) {
if (padding_idx != kNoPadding && ids[i] == padding_idx) {
memset(output + i * row_width, 0, row_width * sizeof(T));
} else {
PADDLE_ENFORCE_GE(
ids[i], 0,
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0. But received %ld",
ids[i]));
if (is_test) {
auto id_index = table_t.GetIndexFromId(ids[i]);
if (id_index != -1) {
if (input_data_type == framework::proto::VarType::INT8) {
memcpy(output + i * row_width, table + id_index * row_width,
row_width * sizeof(T));
} else {
auto blas =
math::GetBlas<platform::CPUDeviceContext, T>(context);
blas.VCOPY(row_width, table + id_index * row_width,
output + i * row_width);
}
} else {
memset(output + i * row_width, 0, row_width * sizeof(T));
}
} else {
auto id_index = table_t.Index(ids[i]);
PADDLE_ENFORCE_GE(
ids[i], 0,
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0. But received %ld",
ids[i]));
PADDLE_ENFORCE_GE(
id_index, 0,
platform::errors::InvalidArgument(
"the input key should be exists. But received %d.",
id_index));
if (input_data_type == framework::proto::VarType::INT8) {
memcpy(output + i * row_width, table + id_index * row_width,
row_width * sizeof(T));
} else {
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
blas.VCOPY(row_width, table + id_index * row_width,
output + i * row_width);
}
}
}
}
}
}
};
template <typename T>
class LookupTableGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *table_var = context.InputVar("W");
DDim table_dim;
if (table_var->IsType<LoDTensor>()) {
table_dim = context.Input<LoDTensor>("W")->dims();
} else if (table_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("W");
table_dim = table_t->value().dims();
} else {
7 years ago
PADDLE_THROW(
"The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows");
}
int64_t padding_idx = context.Attr<int64_t>("padding_idx");
bool is_sparse = context.Attr<bool>("is_sparse");
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
if (is_sparse) {
auto *ids = context.Input<LoDTensor>("Ids");
auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
auto *ids_data = ids->data<int64_t>();
int64_t ids_num = ids->numel();
std::vector<int64_t> new_rows;
new_rows.resize(ids_num);
std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
d_table->set_rows(new_rows);
auto *d_table_value = d_table->mutable_value();
d_table_value->Resize({ids_num, table_dim[1]});
d_table_value->mutable_data<T>(context.GetPlace());
d_table->set_height(table_dim[0]);
auto *d_output_data = d_output->data<T>();
auto *d_table_data = d_table_value->data<T>();
auto d_output_dims = d_output->dims();
auto d_output_dims_2d =
framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
platform::errors::InvalidArgument(
"ShapeError: The shape of lookup_table@Grad and "
"output@Grad should be same. "
"But received lookup_table@Grad's shape = [%s], "
"output@Grad's shape = [%s].",
d_table_value->dims(), d_output_dims_2d));
memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
} else {
auto *ids = context.Input<LoDTensor>("Ids");
auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
auto *ids_data = ids->data<int64_t>();
int64_t N = table_dim[0];
int64_t D = table_dim[1];
auto *d_output_data = d_output->data<T>();
auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
memset(d_table_data, 0, d_table->numel() * sizeof(T));
for (int64_t i = 0; i < ids->numel(); ++i) {
if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
// the gradient of padding_idx should be 0, already done by memset, so
// do nothing.
} else {
PADDLE_ENFORCE_LT(
ids_data[i], N,
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
N, ids_data[i]));
PADDLE_ENFORCE_GE(
ids_data[i], 0,
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input"
"value.",
N, ids_data[i]));
for (int j = 0; j < D; ++j) {
d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
}
}
}
}
}
};
} // namespace operators
} // namespace paddle