You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
254 lines
11 KiB
254 lines
11 KiB
8 years ago
|
# Design for GAN
|
||
|
|
||
8 years ago
|
GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas.
|
||
8 years ago
|
|
||
8 years ago
|
It applies several important concepts in machine learning system design, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.
|
||
8 years ago
|
|
||
8 years ago
|
In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation.
|
||
8 years ago
|
|
||
8 years ago
|
<p align="center">
|
||
8 years ago
|
<img src="./test.dot.png" width = "35%" align="center"/><br/>
|
||
8 years ago
|
Figure 1. The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes. The diamonds indicate the data providers. d\_loss and g\_loss marked in red and green are the two targets we would like to run.
|
||
8 years ago
|
</p>
|
||
|
|
||
8 years ago
|
The operators, layers and functions required/optional to build a GAN demo is summarized in https://github.com/PaddlePaddle/Paddle/issues/4563.
|
||
8 years ago
|
|
||
8 years ago
|
<p align="center">
|
||
|
<img src="./dcgan.png" width = "90%" align="center"/><br/>
|
||
8 years ago
|
Figure 2. Photo borrowed from the original DC-GAN paper.
|
||
8 years ago
|
</p>
|
||
|
|
||
8 years ago
|
## The Conditional-GAN might be a class.
|
||
|
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:
|
||
|
|
||
8 years ago
|
- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:
|
||
8 years ago
|
|
||
8 years ago
|
- __init__(...): Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well.
|
||
8 years ago
|
|
||
8 years ago
|
- generator(z, y=None): Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen.
|
||
8 years ago
|
Returns a generated image.
|
||
|
|
||
8 years ago
|
- discriminator(image):
|
||
8 years ago
|
Given an image, decide if it is from a real source or a fake one.
|
||
|
Returns a 0/1 binary label.
|
||
|
|
||
8 years ago
|
- build_model(self):
|
||
8 years ago
|
build the whole GAN model, define training loss for both generator and discrimator.
|
||
8 years ago
|
|
||
8 years ago
|
## Discussion on Engine Functions required to build GAN
|
||
8 years ago
|
- Trace the tensor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly)
|
||
8 years ago
|
- Different optimizers responsible for optimizing different loss.
|
||
|
|
||
|
To be more detailed, we introduce our design of DCGAN as following:
|
||
|
|
||
|
### Class member Function: Initializer
|
||
|
- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth.
|
||
|
- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G.
|
||
8 years ago
|
```python
|
||
8 years ago
|
class DCGAN(object):
|
||
|
def __init__(self, y_dim=None):
|
||
|
|
||
|
# hyper parameters
|
||
|
self.y_dim = y_dim # conditional gan or not
|
||
|
self.batch_size = 100
|
||
|
self.z_dim = z_dim # input noise dimension
|
||
|
|
||
|
# define parameters of discriminators
|
||
8 years ago
|
self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer())
|
||
8 years ago
|
self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
|
||
8 years ago
|
self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
|
||
|
self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
|
||
|
self.D_W2 = pd.Varialble(np.random.rand(128, 1))
|
||
|
self.D_b2 = pd.Variable(np.zeros(128))
|
||
8 years ago
|
self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
|
||
8 years ago
|
|
||
|
# define parameters of generators
|
||
8 years ago
|
self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
|
||
|
self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
|
||
8 years ago
|
self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
|
||
|
self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
|
||
|
self.G_W2 = pd.Varialble(np.random.rand(128, 1))
|
||
|
self.G_b2 = pd.Variable(np.zeros(128))
|
||
8 years ago
|
self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
|
||
|
```
|
||
8 years ago
|
|
||
8 years ago
|
### Class member Function: Generator
|
||
|
- Given a noisy input z, returns a fake image.
|
||
|
- Concatenation, batch-norm, FC operations required;
|
||
|
- Deconv layer required, which is missing now...
|
||
8 years ago
|
```python
|
||
8 years ago
|
class DCGAN(object):
|
||
|
def generator(self, z, y = None):
|
||
8 years ago
|
# input z: the random noise
|
||
|
# input y: input data label (optional)
|
||
|
# output G_im: generated fake images
|
||
|
|
||
8 years ago
|
if not self.y_dim:
|
||
8 years ago
|
z = pd.layer.concat(1, [z, y])
|
||
8 years ago
|
|
||
8 years ago
|
G_h0 = pd.layer.fc(z, self.G_w0, self.G_b0)
|
||
|
G_h0_bn = pd.layer.batch_norm(G_h0)
|
||
|
G_h0_relu = pd.layer.relu(G_h0_bn)
|
||
8 years ago
|
|
||
8 years ago
|
G_h1 = pd.layer.deconv(G_h0_relu, self.G_w1, self.G_b1)
|
||
|
G_h1_bn = pd.layer.batch_norm(G_h1)
|
||
|
G_h1_relu = pd.layer.relu(G_h1_bn)
|
||
8 years ago
|
|
||
8 years ago
|
G_h2 = pd.layer.deconv(G_h1_relu, self.G_W2, self.G_b2))
|
||
|
G_im = pd.layer.tanh(G_im)
|
||
8 years ago
|
return G_im
|
||
8 years ago
|
```
|
||
|
|
||
8 years ago
|
### Class member function: Discriminator
|
||
|
- Given a noisy input z, returns a fake image.
|
||
|
- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required;
|
||
8 years ago
|
```python
|
||
8 years ago
|
class DCGAN(object):
|
||
|
def discriminator(self, image):
|
||
8 years ago
|
# input image: either generated images or real ones
|
||
|
# output D_h2: binary logit of the label
|
||
8 years ago
|
|
||
8 years ago
|
D_h0 = pd.layer.conv2d(image, w=self.D_w0, b=self.D_b0)
|
||
|
D_h0_bn = pd.layer.batchnorm(h0)
|
||
|
D_h0_relu = pd.layer.lrelu(h0_bn)
|
||
8 years ago
|
|
||
8 years ago
|
D_h1 = pd.layer.conv2d(D_h0_relu, w=self.D_w1, b=self.D_b1)
|
||
|
D_h1_bn = pd.layer.batchnorm(D_h1)
|
||
|
D_h1_relu = pd.layer.lrelu(D_h1_bn)
|
||
8 years ago
|
|
||
8 years ago
|
D_h2 = pd.layer.fc(D_h1_relu, w=self.D_w2, b=self.D_b2)
|
||
8 years ago
|
return D_h2
|
||
8 years ago
|
```
|
||
8 years ago
|
|
||
|
### Class member function: Build the model
|
||
8 years ago
|
- Define data readers as placeholders to hold the data;
|
||
|
- Build generator and discriminators;
|
||
|
- Define two training losses for discriminator and generator, respectively.
|
||
8 years ago
|
If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this:
|
||
8 years ago
|
```python
|
||
8 years ago
|
class DCGAN(object):
|
||
|
def build_model(self):
|
||
8 years ago
|
if self.y_dim:
|
||
|
self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
|
||
|
self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
|
||
|
self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
|
||
|
self.z = pd.data(tf.float32, [None, self.z_size])
|
||
|
|
||
8 years ago
|
# step 1: generate images by generator, classify real/fake images with discriminator
|
||
|
if self.y_dim: # if conditional GAN, includes label
|
||
8 years ago
|
self.G = self.generator(self.z, self.y)
|
||
|
self.D_t = self.discriminator(self.images)
|
||
|
# generated fake images
|
||
|
self.sampled = self.sampler(self.z, self.y)
|
||
|
self.D_f = self.discriminator(self.G)
|
||
8 years ago
|
else: # original version of GAN
|
||
8 years ago
|
self.G = self.generator(self.z)
|
||
|
self.D_t = self.discriminator(self.images)
|
||
|
# generate fake images
|
||
|
self.sampled = self.sampler(self.z)
|
||
|
self.D_f = self.discriminator(self.images)
|
||
8 years ago
|
|
||
8 years ago
|
# step 2: define the two losses
|
||
8 years ago
|
self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
|
||
|
self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
|
||
|
self.d_loss = self.d_loss_real + self.d_loss_fake
|
||
|
|
||
|
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
|
||
8 years ago
|
```
|
||
8 years ago
|
|
||
8 years ago
|
If we do not have dependency engine but blocks, the module building our GAN model will be like this:
|
||
|
```python
|
||
|
class DCGAN(object):
|
||
|
def build_model(self, default_block):
|
||
|
# input data in the default block
|
||
|
if self.y_dim:
|
||
|
self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
|
||
|
self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
|
||
|
# self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
|
||
|
self.z = pd.data(tf.float32, [None, self.z_size])
|
||
|
|
||
|
# step 1: generate images by generator, classify real/fake images with discriminator
|
||
|
with pd.default_block().g_block():
|
||
|
if self.y_dim: # if conditional GAN, includes label
|
||
|
self.G = self.generator(self.z, self.y)
|
||
|
self.D_g = self.discriminator(self.G, self.y)
|
||
|
else: # original version of GAN
|
||
|
self.G = self.generator(self.z)
|
||
|
self.D_g = self.discriminator(self.G, self.y)
|
||
|
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_g, np.ones(self.batch_szie))
|
||
|
|
||
|
with pd.default_block().d_block():
|
||
|
if self.y_dim: # if conditional GAN, includes label
|
||
|
self.D_t = self.discriminator(self.images, self.y)
|
||
|
self.D_f = self.discriminator(self.G, self.y)
|
||
|
else: # original version of GAN
|
||
|
self.D_t = self.discriminator(self.images)
|
||
|
self.D_f = self.discriminator(self.G)
|
||
|
|
||
|
# step 2: define the two losses
|
||
|
self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
|
||
|
self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
|
||
|
self.d_loss = self.d_loss_real + self.d_loss_fake
|
||
|
```
|
||
|
Some small confusion and problems with this design:
|
||
8 years ago
|
- D\_g and D\_f are actually the same thing, but has to be written twice; i.e., if we want to run two sub-graphs conceptually, the same codes have to be written twice if they are shared by the graph.
|
||
8 years ago
|
- Requires ability to create a block anytime, rather than in if-else or rnn only;
|
||
|
|
||
8 years ago
|
## Main function for the demo:
|
||
8 years ago
|
Generally, the user of GAN just need to the following things:
|
||
|
- Define an object as DCGAN class;
|
||
|
- Build the DCGAN model;
|
||
|
- Specify two optimizers for two different losses with respect to different parameters.
|
||
8 years ago
|
```python
|
||
8 years ago
|
# pd for short, should be more concise.
|
||
|
from paddle.v2 as pd
|
||
|
import numpy as np
|
||
|
import logging
|
||
|
|
||
8 years ago
|
if __name__ == "__main__":
|
||
8 years ago
|
# dcgan class in the default graph/block
|
||
8 years ago
|
# if we use dependency engine as tensorflow
|
||
|
# the codes, will be slightly different like:
|
||
|
# dcgan = DCGAN()
|
||
|
# dcgan.build_model()
|
||
8 years ago
|
with pd.block() as def_block:
|
||
|
dcgan = DCGAN()
|
||
|
dcgan.build_model(def_block)
|
||
8 years ago
|
|
||
|
# load mnist data
|
||
|
data_X, data_y = self.load_mnist()
|
||
|
|
||
|
# Two subgraphs required!!!
|
||
8 years ago
|
with pd.block().d_block():
|
||
|
d_optim = pd.train.Adam(lr = .001, beta= .1)
|
||
|
d_step = d_optim.minimize(dcgan.d_loss, dcgan.theta_D)
|
||
|
with pd.block.g_block():
|
||
|
g_optim = pd.train.Adam(lr = .001, beta= .1)
|
||
|
g_step = pd.minimize(dcgan.g_loss, dcgan.theta_G)
|
||
8 years ago
|
|
||
|
# executor
|
||
|
sess = pd.executor()
|
||
|
|
||
|
# training
|
||
|
for epoch in xrange(10000):
|
||
|
for batch_id in range(N / batch_size):
|
||
|
idx = ...
|
||
|
# sample a batch
|
||
|
batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
|
||
|
# sample z
|
||
|
batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])
|
||
|
|
||
|
if batch_id % 2 == 0:
|
||
8 years ago
|
sess.run(d_step,
|
||
8 years ago
|
feed_dict = {dcgan.images: batch_im,
|
||
|
dcgan.y: batch_label,
|
||
|
dcgan.z: batch_z})
|
||
|
else:
|
||
8 years ago
|
sess.run(g_step,
|
||
8 years ago
|
feed_dict = {dcgan.z: batch_z})
|
||
8 years ago
|
```
|
||
8 years ago
|
|
||
|
# More thinking about dependency engine v.s. block design:
|
||
|
- What if we just want to run an intermediate result? Do we need to run the whole block/graph?
|
||
|
- Should we call eval() to get the fake images in the first stage? And then train the discriminator in the second stage?
|