You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/multi_trainer.cc

150 lines
4.7 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
#if defined PADDLE_WITH_PSCORE
#include "paddle/fluid/distributed/service/communicator.h"
#endif
namespace paddle {
namespace framework {
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
Dataset* dataset) {
thread_num_ = trainer_desc.thread_num();
SetDataset(dataset);
ParseDumpConfig(trainer_desc);
mpi_rank_ = trainer_desc.mpi_rank();
mpi_size_ = trainer_desc.mpi_size();
dump_file_num_ = trainer_desc.dump_file_num();
for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
i++) {
need_merge_var_names_.push_back(
trainer_desc.downpour_param().stat_var_names(i));
}
// get filelist from trainer_desc here
const std::vector<paddle::framework::DataFeed*> readers =
dataset->GetReaders();
VLOG(3) << "readers num: " << readers.size();
// change thread num to readers num
thread_num_ = readers.size();
VLOG(3) << "worker thread num: " << thread_num_;
workers_.resize(thread_num_);
#if defined PADDLE_WITH_PSCORE
if (trainer_desc.thread_barrier()) {
paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
thread_num_);
}
#endif
for (int i = 0; i < thread_num_; ++i) {
workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
trainer_desc.device_worker_name());
workers_[i]->SetNeedDumpField(need_dump_field_);
workers_[i]->SetNeedDumpParam(need_dump_param_);
workers_[i]->SetDumpFieldVector(dump_fields_);
workers_[i]->SetDumpParamVector(dump_param_);
workers_[i]->InitRandomDumpConfig(trainer_desc);
workers_[i]->Initialize(trainer_desc);
workers_[i]->SetDeviceIndex(i);
workers_[i]->SetDataFeed(readers[i]);
}
// set debug here
SetDebug(trainer_desc.debug());
}
std::string MultiTrainer::GetDumpPath(int tid) {
if (user_define_dump_filename_ != "") {
return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
user_define_dump_filename_.c_str(), tid);
}
return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
mpi_rank_, tid);
}
void MultiTrainer::InitDumpEnv() {
queue_ = paddle::framework::MakeChannel<std::string>();
for (int i = 0; i < thread_num_; ++i) {
workers_[i]->SetChannelWriter(queue_.get());
}
dump_thread_num_ = 1;
if (dump_file_num_ > mpi_size_) {
dump_thread_num_ = dump_file_num_ / mpi_size_;
if (dump_file_num_ % mpi_size_ > mpi_rank_) {
dump_thread_num_ += 1;
}
}
for (int i = 0; i < dump_thread_num_; i++) {
dump_thread_.push_back(
std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
}
}
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
const platform::Place& place) {
for (int i = 0; i < thread_num_; ++i) {
workers_[i]->SetPlace(place);
workers_[i]->SetReaderPlace(place);
workers_[i]->SetRootScope(root_scope_);
workers_[i]->CreateDeviceResource(main_program); // Program
workers_[i]->BindingDataFeedMemory();
workers_[i]->CacheProgram(main_program);
}
}
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
if (need_dump_field_ || need_dump_param_) {
InitDumpEnv();
}
VLOG(3) << "init other env done.";
}
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
return workers_[thread_id]->GetThreadScope();
}
void MultiTrainer::Run() {
VLOG(3) << "Going to run";
for (int thidx = 0; thidx < thread_num_; ++thidx) {
if (!debug_) {
threads_.push_back(
std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
} else {
threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
workers_[thidx].get()));
}
}
for (auto& th : threads_) {
th.join();
}
}
void MultiTrainer::Finalize() {
if (need_dump_field_ || need_dump_param_) {
FinalizeDumpEnv();
}
root_scope_->DropKids();
}
} // end namespace framework
} // end namespace paddle