|
|
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <array>
|
|
|
|
#include <memory>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/conv_search_cache.h"
|
|
|
|
#include "paddle/fluid/framework/operator_kernel_configs.h"
|
|
|
|
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
|
|
|
|
#include "paddle/fluid/platform/cudnn_desc.h"
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
using DataLayout = platform::DataLayout;
|
|
|
|
template <typename T>
|
|
|
|
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
|
|
|
|
using framework::AlgorithmsCache;
|
|
|
|
static inline void GetNCDHW(const framework::DDim& dims,
|
|
|
|
const DataLayout& layout, int* N, int* C, int* D,
|
|
|
|
int* H, int* W) {
|
|
|
|
*N = dims[0];
|
|
|
|
*C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
|
|
|
|
int i = layout == DataLayout::kNCHW ? 0 : 1;
|
|
|
|
if (dims.size() == 5) {
|
|
|
|
*D = dims[2 - i];
|
|
|
|
*H = dims[3 - i];
|
|
|
|
*W = dims[4 - i];
|
|
|
|
} else {
|
|
|
|
*D = 1;
|
|
|
|
*H = dims[2 - i];
|
|
|
|
*W = dims[3 - i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T, size_t D>
|
|
|
|
static void RemovePaddingSlice(const framework::ExecutionContext& context,
|
|
|
|
const Tensor* input, Tensor* out,
|
|
|
|
const std::vector<int>& starts,
|
|
|
|
const std::vector<int>& axes) {
|
|
|
|
auto& place =
|
|
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
|
|
auto in_dims = input->dims();
|
|
|
|
auto new_out_dims = out->dims();
|
|
|
|
auto offsets = Eigen::array<int, D>();
|
|
|
|
auto extents = Eigen::array<int, D>();
|
|
|
|
for (size_t i = 0; i < D; ++i) {
|
|
|
|
offsets[i] = 0;
|
|
|
|
extents[i] = new_out_dims[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
int start;
|
|
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
|
|
start = starts[i];
|
|
|
|
if (start < 0) {
|
|
|
|
start = (start + in_dims[axes[i]]);
|
|
|
|
}
|
|
|
|
start = std::max(start, 0);
|
|
|
|
offsets[axes[i]] = start;
|
|
|
|
}
|
|
|
|
auto in_t =
|
|
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
|
|
*input);
|
|
|
|
|
|
|
|
auto out_t =
|
|
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
|
|
*out, new_out_dims);
|
|
|
|
out_t.device(place) = in_t.slice(offsets, extents);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
|
|
|
|
out << "[";
|
|
|
|
for (auto const& tmp : v) out << tmp << ",";
|
|
|
|
out << "]";
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int MaxBwdFilterAlgos(cudnnHandle_t cudnn_handle) {
|
|
|
|
int max_algos = 0;
|
|
|
|
#if CUDNN_VERSION_MIN(7, 0, 1)
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
|
|
|
|
cudnn_handle, &max_algos));
|
|
|
|
#endif
|
|
|
|
return max_algos;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename PerfType, typename AlgoType>
|
|
|
|
void ChooseAlgoByWorkspace(PerfType* perf_results, size_t perf_num,
|
|
|
|
size_t workspace_byte, AlgoType* algo) {
|
|
|
|
for (size_t i = 0; i < perf_num; ++i) {
|
|
|
|
auto result = perf_results[i];
|
|
|
|
if (result.status == CUDNN_STATUS_SUCCESS &&
|
|
|
|
result.memory < workspace_byte) {
|
|
|
|
*algo = result.algo;
|
|
|
|
VLOG(3) << " algo: " << result.algo << ", time: " << result.time
|
|
|
|
<< " ms, wksp = " << result.memory
|
|
|
|
<< ", status = " << result.status;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
VLOG(3) << "Can not find alog that requires memory < "
|
|
|
|
<< static_cast<double>(workspace_byte) / (1 << 20) << " MB";
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename PerfType, typename AlgoType>
|
|
|
|
void ChooseAlgo(const std::vector<PerfType>& perf_results,
|
|
|
|
size_t workspace_byte, AlgoType* algo) {
|
|
|
|
VLOG(3) << "=========BwdFilterAlgo Perf result=========";
|
|
|
|
for (const auto& result : perf_results) {
|
|
|
|
auto math_type_str = "False";
|
|
|
|
if (result.mathType == CUDNN_TENSOR_OP_MATH) {
|
|
|
|
math_type_str = "True";
|
|
|
|
}
|
|
|
|
VLOG(3) << " algo: " << result.algo << ", TensorCore: " << math_type_str
|
|
|
|
<< ", time: " << result.time << " ms"
|
|
|
|
<< ", wksp = " << result.memory << ", status = " << result.status;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i != perf_results.size(); ++i) {
|
|
|
|
const auto& result = perf_results[i];
|
|
|
|
if (result.status == CUDNN_STATUS_SUCCESS &&
|
|
|
|
(result.memory <= workspace_byte)) {
|
|
|
|
if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
|
|
|
|
(i != perf_results.size() - 1)) {
|
|
|
|
const auto& next_result = perf_results[i + 1];
|
|
|
|
if (next_result.status == CUDNN_STATUS_SUCCESS &&
|
|
|
|
next_result.algo == result.algo &&
|
|
|
|
next_result.memory == result.memory &&
|
|
|
|
next_result.mathType != CUDNN_TENSOR_OP_MATH &&
|
|
|
|
next_result.time < 1.01 * result.time) {
|
|
|
|
// Skip over this result- it's not really a Tensor Core algo.
|
|
|
|
// Because it is only 1% performance difference.
|
|
|
|
// Prefer to choose the next equivalent non-Tensor Core algo.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*algo = result.algo;
|
|
|
|
auto math_type_str = "0";
|
|
|
|
if (result.mathType == CUDNN_TENSOR_OP_MATH) {
|
|
|
|
math_type_str = "1";
|
|
|
|
}
|
|
|
|
VLOG(3) << " choose algo: " << result.algo << ", TC: " << math_type_str
|
|
|
|
<< ", time: " << result.time << " ms"
|
|
|
|
<< ", wksp = " << result.memory << ", status = " << result.status;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
using framework::ConvSearchCache;
|
|
|
|
|
|
|
|
struct ConvArgs {
|
|
|
|
cudnnHandle_t handle;
|
|
|
|
platform::TensorDescriptor idesc, odesc;
|
|
|
|
platform::FilterDescriptor wdesc;
|
|
|
|
platform::ConvolutionDescriptor cdesc;
|
|
|
|
const framework::Tensor *x, *w, *o;
|
|
|
|
cudnnDataType_t cudnn_dtype;
|
|
|
|
|
|
|
|
// strides
|
|
|
|
std::vector<int> s;
|
|
|
|
// paddings
|
|
|
|
std::vector<int> p;
|
|
|
|
// dilations
|
|
|
|
std::vector<int> d;
|
|
|
|
|
|
|
|
ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
|
|
|
|
const framework::Tensor* o, const std::vector<int> s,
|
|
|
|
const std::vector<int> p, const std::vector<int> d,
|
|
|
|
cudnnDataType_t dtype)
|
|
|
|
: x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename perf_t>
|
|
|
|
struct SearchAlgorithm {};
|
|
|
|
|
|
|
|
template <>
|
|
|
|
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
|
|
|
|
using perf_t = cudnnConvolutionFwdAlgoPerf_t;
|
|
|
|
using algo_t = cudnnConvolutionFwdAlgo_t;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static algo_t Find(const ConvArgs& args, bool exhaustive_search,
|
|
|
|
bool deterministic,
|
|
|
|
const framework::ExecutionContext& ctx) {
|
|
|
|
auto dtype = platform::CudnnDataType<T>::type;
|
|
|
|
bool has_got_workspace_size = true;
|
|
|
|
size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
|
|
|
|
size_t workspace_size = 0;
|
|
|
|
algo_t algo;
|
|
|
|
|
|
|
|
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
|
|
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
|
|
|
|
args.cdesc.desc(), CUDNN_DEFAULT_MATH));
|
|
|
|
VLOG(5) << "NOT use cudnn_tensor_op_math";
|
|
|
|
if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
|
|
|
|
CUDNN_TENSOR_OP_MATH));
|
|
|
|
VLOG(5) << "use cudnn_tensor_op_math";
|
|
|
|
} else if (dtype == CUDNN_DATA_FLOAT && !args.cdesc.allow_tf32_) {
|
|
|
|
#if CUDA_VERSION >= 11000
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
|
|
|
|
CUDNN_FMA_MATH));
|
|
|
|
#endif // CUDA_VERSION >= 11000
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (!exhaustive_search && !deterministic) {
|
|
|
|
#if CUDNN_VERSION >= 7001
|
|
|
|
int perf_count;
|
|
|
|
int best_algo_idx = 0;
|
|
|
|
std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
|
|
|
|
args.handle, args.idesc.desc(), args.wdesc.desc(),
|
|
|
|
args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
|
|
|
|
&perf_count, perf_results.get()));
|
|
|
|
algo = (perf_results.get())[best_algo_idx].algo;
|
|
|
|
workspace_size = GetWorkspaceSize(args, algo);
|
|
|
|
|
|
|
|
if (workspace_size > workspace_size_limit) {
|
|
|
|
#if CUDNN_VERSION >= 8000
|
|
|
|
// cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
|
|
|
|
ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
|
|
|
|
kNUM_CUDNN_FWD_ALGS,
|
|
|
|
workspace_size_limit, &algo);
|
|
|
|
#else
|
|
|
|
VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
|
|
|
|
"the workspace size request("
|
|
|
|
<< workspace_size << ") exceeds the limit("
|
|
|
|
<< workspace_size_limit << ")";
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionForwardAlgorithm(
|
|
|
|
args.handle, args.idesc.desc(), args.wdesc.desc(),
|
|
|
|
args.cdesc.desc(), args.odesc.desc(),
|
|
|
|
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
|
|
|
|
workspace_size_limit, &algo));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionForwardAlgorithm(
|
|
|
|
args.handle, args.idesc.desc(), args.wdesc.desc(),
|
|
|
|
args.cdesc.desc(), args.odesc.desc(),
|
|
|
|
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
|
|
|
|
workspace_size_limit, &algo));
|
|
|
|
#endif
|
|
|
|
VLOG(3) << "choose algo " << algo;
|
|
|
|
} else if (deterministic) {
|
|
|
|
algo = static_cast<cudnnConvolutionFwdAlgo_t>(1);
|
|
|
|
} else {
|
|
|
|
auto& dev_ctx =
|
|
|
|
ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
auto workspace_handle = dev_ctx.cudnn_workspace_handle();
|
|
|
|
|
|
|
|
auto& temp = ctx.cuda_device_context();
|
|
|
|
AlgorithmsCache<algo_t>& algo_cache =
|
|
|
|
*(framework::ConvSearchCache::Instance().GetForward());
|
|
|
|
|
|
|
|
auto x_dims = framework::vectorize(args.x->dims());
|
|
|
|
auto w_dims = framework::vectorize(args.w->dims());
|
|
|
|
|
|
|
|
VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
|
|
|
|
<< ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
|
|
|
|
<< args.s << ", args.p" << args.p << ", args.d" << args.d;
|
|
|
|
|
|
|
|
algo = algo_cache.GetAlgorithm(
|
|
|
|
x_dims, w_dims, args.s, args.p, args.d, 0,
|
|
|
|
static_cast<int64_t>(args.cudnn_dtype), [&]() {
|
|
|
|
int returned_algo_count;
|
|
|
|
std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;
|
|
|
|
|
|
|
|
auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
|
|
|
|
args.handle, args.idesc.desc(), args.x->data<T>(),
|
|
|
|
args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
|
|
|
|
args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
|
|
|
|
kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
|
|
|
|
perf_stat.data(), cudnn_workspace_ptr,
|
|
|
|
workspace_size_limit));
|
|
|
|
};
|
|
|
|
workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
|
|
|
|
|
|
|
|
VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
|
|
|
|
for (int i = 0; i < returned_algo_count; ++i) {
|
|
|
|
const auto& stat = perf_stat[i];
|
|
|
|
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
|
|
|
|
<< " " << stat.memory;
|
|
|
|
}
|
|
|
|
return perf_stat[0].algo;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
VLOG(3) << "choose algo " << algo;
|
|
|
|
return algo;
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
|
|
|
|
size_t workspace_size = 0;
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
|
|
|
|
args.handle, args.idesc.desc(), args.wdesc.desc(),
|
|
|
|
args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
|
|
|
|
return workspace_size;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
|
|
|
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
|
|
|
|
using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
|
|
|
|
using algo_t = cudnnConvolutionBwdDataAlgo_t;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static algo_t Find(const ConvArgs& args, bool exhaustive_search,
|
|
|
|
bool deterministic,
|
|
|
|
const framework::ExecutionContext& ctx) {
|
|
|
|
auto dtype = platform::CudnnDataType<T>::type;
|
|
|
|
size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
|
|
|
|
size_t workspace_size = 0;
|
|
|
|
bool has_got_workspace_size = true;
|
|
|
|
algo_t algo;
|
|
|
|
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
|
|
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
|
|
|
|
args.cdesc.desc(), CUDNN_DEFAULT_MATH));
|
|
|
|
VLOG(5) << "NOT use cudnn_tensor_op_math";
|
|
|
|
if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
|
|
|
|
CUDNN_TENSOR_OP_MATH));
|
|
|
|
VLOG(5) << "use cudnn_tensor_op_math";
|
|
|
|
} else if (dtype == CUDNN_DATA_FLOAT && !args.cdesc.allow_tf32_) {
|
|
|
|
#if CUDA_VERSION >= 11000
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
|
|
|
|
CUDNN_FMA_MATH));
|
|
|
|
#endif // CUDA_VERSION >= 11000
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (!exhaustive_search && !deterministic) {
|
|
|
|
#if CUDNN_VERSION >= 7001
|
|
|
|
int perf_count;
|
|
|
|
int best_algo_idx = 0;
|
|
|
|
std::unique_ptr<perf_t[]> perf_results(
|
|
|
|
new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
|
|
|
|
args.handle, args.wdesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
|
|
|
|
&perf_count, perf_results.get()));
|
|
|
|
algo = (perf_results.get())[best_algo_idx].algo;
|
|
|
|
|
|
|
|
#if CUDNN_VERSION < 7500
|
|
|
|
int stride_dim = args.x->dims().size() - 2;
|
|
|
|
bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
|
|
|
|
[=](int n) { return n != 1; });
|
|
|
|
if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
|
|
|
|
perf_results[best_algo_idx].algo) ==
|
|
|
|
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
|
|
|
|
static_cast<cudnnConvolutionBwdDataAlgo_t>(
|
|
|
|
perf_results[best_algo_idx].algo) ==
|
|
|
|
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
|
|
|
|
algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
workspace_size = GetWorkspaceSize(args, algo);
|
|
|
|
if (workspace_size > workspace_size_limit) {
|
|
|
|
has_got_workspace_size = false;
|
|
|
|
#if CUDNN_VERSION >= 8000
|
|
|
|
// cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
|
|
|
|
ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
|
|
|
|
kNUM_CUDNN_BWD_DATA_ALGS,
|
|
|
|
workspace_size_limit, &algo);
|
|
|
|
#else
|
|
|
|
VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
|
|
|
|
"the workspace size request("
|
|
|
|
<< workspace_size << ") exceeds the limit("
|
|
|
|
<< workspace_size_limit << ")";
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
|
|
|
|
args.handle, args.wdesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.idesc.desc(),
|
|
|
|
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
|
|
|
|
workspace_size_limit, &algo));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
|
|
|
|
args.handle, args.wdesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.idesc.desc(),
|
|
|
|
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
|
|
|
|
workspace_size_limit, &algo));
|
|
|
|
#endif
|
|
|
|
} else if (deterministic) {
|
|
|
|
return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
|
|
|
|
} else {
|
|
|
|
auto& dev_ctx =
|
|
|
|
ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
auto workspace_handle = dev_ctx.cudnn_workspace_handle();
|
|
|
|
|
|
|
|
AlgorithmsCache<algo_t>& algo_cache =
|
|
|
|
*(framework::ConvSearchCache::Instance().GetBackwardData());
|
|
|
|
|
|
|
|
auto x_dims = framework::vectorize(args.x->dims());
|
|
|
|
auto w_dims = framework::vectorize(args.w->dims());
|
|
|
|
|
|
|
|
VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t"
|
|
|
|
<< ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
|
|
|
|
<< args.s << ", args.p" << args.p << ", args.d" << args.d;
|
|
|
|
|
|
|
|
algo = algo_cache.GetAlgorithm(
|
|
|
|
x_dims, w_dims, args.s, args.p, args.d, 0,
|
|
|
|
static_cast<int64_t>(args.cudnn_dtype), [&]() {
|
|
|
|
int returned_algo_count;
|
|
|
|
std::array<perf_t, kNUM_CUDNN_BWD_DATA_ALGS> perf_stat;
|
|
|
|
|
|
|
|
auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::
|
|
|
|
cudnnFindConvolutionBackwardDataAlgorithmEx(
|
|
|
|
args.handle, args.wdesc.desc(), args.w->data<T>(),
|
|
|
|
args.odesc.desc(), args.o->data<T>(),
|
|
|
|
args.cdesc.desc(), args.idesc.desc(),
|
|
|
|
const_cast<T*>(args.x->data<T>()),
|
|
|
|
kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
|
|
|
|
perf_stat.data(), cudnn_workspace_ptr,
|
|
|
|
workspace_size_limit));
|
|
|
|
};
|
|
|
|
workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
|
|
|
|
|
|
|
|
VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
|
|
|
|
for (int i = 0; i < returned_algo_count; ++i) {
|
|
|
|
const auto& stat = perf_stat[i];
|
|
|
|
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
|
|
|
|
<< " " << stat.memory;
|
|
|
|
}
|
|
|
|
|
|
|
|
return perf_stat[0].algo;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
VLOG(3) << "choose algo " << algo;
|
|
|
|
return algo;
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
|
|
|
|
size_t workspace_size = 0;
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
|
|
|
|
args.handle, args.wdesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
|
|
|
|
return workspace_size;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
|
|
|
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
|
|
|
|
using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
|
|
|
|
using algo_t = cudnnConvolutionBwdFilterAlgo_t;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static algo_t Find(const ConvArgs& args, bool exhaustive_search,
|
|
|
|
bool deterministic,
|
|
|
|
const framework::ExecutionContext& ctx) {
|
|
|
|
auto dtype = platform::CudnnDataType<T>::type;
|
|
|
|
size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
|
|
|
|
size_t workspace_size = 0;
|
|
|
|
bool has_got_workspace_size = true;
|
|
|
|
|
|
|
|
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
|
|
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
|
|
|
|
args.cdesc.desc(), CUDNN_DEFAULT_MATH));
|
|
|
|
VLOG(5) << "NOT use cudnn_tensor_op_math";
|
|
|
|
if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
|
|
|
|
CUDNN_TENSOR_OP_MATH));
|
|
|
|
VLOG(5) << "use cudnn_tensor_op_math";
|
|
|
|
} else if (dtype == CUDNN_DATA_FLOAT && !args.cdesc.allow_tf32_) {
|
|
|
|
#if CUDA_VERSION >= 11000
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
|
|
|
|
CUDNN_FMA_MATH));
|
|
|
|
#endif // CUDA_VERSION >= 11000
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
algo_t algo;
|
|
|
|
if (!exhaustive_search && !deterministic) {
|
|
|
|
#if CUDNN_VERSION >= 7001
|
|
|
|
using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
|
|
|
|
int perf_count;
|
|
|
|
int best_algo_idx = 0;
|
|
|
|
std::unique_ptr<perf_t[]> perf_results(
|
|
|
|
new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
|
|
|
|
args.handle, args.idesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
|
|
|
|
&perf_count, perf_results.get()));
|
|
|
|
algo = (perf_results.get())[best_algo_idx].algo;
|
|
|
|
workspace_size = GetWorkspaceSize(args, algo);
|
|
|
|
if (workspace_size > workspace_size_limit) {
|
|
|
|
workspace_size = workspace_size_limit;
|
|
|
|
#if CUDNN_VERSION >= 8000
|
|
|
|
// cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
|
|
|
|
ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
|
|
|
|
kNUM_CUDNN_BWD_FILTER_ALGS,
|
|
|
|
workspace_size_limit, &algo);
|
|
|
|
#else
|
|
|
|
VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
|
|
|
|
"the workspace size request("
|
|
|
|
<< workspace_size << ") exceeds the limit("
|
|
|
|
<< workspace_size_limit << ")";
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
|
|
|
|
args.handle, args.idesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.wdesc.desc(),
|
|
|
|
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
|
|
|
|
workspace_size_limit, &algo));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
|
|
|
|
args.handle, args.idesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.wdesc.desc(),
|
|
|
|
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
|
|
|
|
workspace_size_limit, &algo));
|
|
|
|
#endif
|
|
|
|
} else if (deterministic) {
|
|
|
|
return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
|
|
|
|
} else {
|
|
|
|
auto& dev_ctx =
|
|
|
|
ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
auto workspace_handle = dev_ctx.cudnn_workspace_handle();
|
|
|
|
AlgorithmsCache<algo_t>& algo_cache =
|
|
|
|
*(framework::ConvSearchCache::Instance().GetBackwardFilter());
|
|
|
|
|
|
|
|
auto x_dims = framework::vectorize(args.x->dims());
|
|
|
|
auto w_dims = framework::vectorize(args.w->dims());
|
|
|
|
|
|
|
|
VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
|
|
|
|
<< ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
|
|
|
|
<< args.s << ", args.p" << args.p << ", args.d" << args.d;
|
|
|
|
if (dtype != CUDNN_DATA_HALF) {
|
|
|
|
algo = algo_cache.GetAlgorithm(
|
|
|
|
x_dims, w_dims, args.s, args.p, args.d, 0,
|
|
|
|
static_cast<int64_t>(args.cudnn_dtype), [&]() {
|
|
|
|
int returned_algo_count;
|
|
|
|
std::array<perf_t, kNUM_CUDNN_BWD_FILTER_ALGS> perf_stat;
|
|
|
|
auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::
|
|
|
|
cudnnFindConvolutionBackwardFilterAlgorithmEx(
|
|
|
|
args.handle, args.idesc.desc(), args.x->data<T>(),
|
|
|
|
args.odesc.desc(), args.o->data<T>(),
|
|
|
|
args.cdesc.desc(), args.wdesc.desc(),
|
|
|
|
const_cast<T*>(args.w->data<T>()),
|
|
|
|
kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
|
|
|
|
perf_stat.data(), cudnn_workspace_ptr,
|
|
|
|
workspace_size_limit));
|
|
|
|
};
|
|
|
|
workspace_handle.RunFuncSync(cudnn_find_func,
|
|
|
|
workspace_size_limit);
|
|
|
|
|
|
|
|
VLOG(3)
|
|
|
|
<< "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
|
|
|
|
for (int i = 0; i < returned_algo_count; ++i) {
|
|
|
|
const auto& stat = perf_stat[i];
|
|
|
|
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
|
|
|
|
<< " " << stat.memory;
|
|
|
|
}
|
|
|
|
return perf_stat[0].algo;
|
|
|
|
});
|
|
|
|
} else {
|
|
|
|
auto max_algos = MaxBwdFilterAlgos(args.handle);
|
|
|
|
algo = algo_cache.GetAlgorithm(
|
|
|
|
x_dims, w_dims, args.s, args.p, args.d, 0,
|
|
|
|
static_cast<int64_t>(args.cudnn_dtype), [&]() {
|
|
|
|
algo_t chosen_algo;
|
|
|
|
std::vector<perf_t> perf_results(max_algos);
|
|
|
|
int actual_algos = 0;
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::
|
|
|
|
cudnnFindConvolutionBackwardFilterAlgorithm(
|
|
|
|
args.handle, args.idesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.wdesc.desc(),
|
|
|
|
perf_results.size(), &actual_algos,
|
|
|
|
perf_results.data()));
|
|
|
|
perf_results.resize(actual_algos);
|
|
|
|
ChooseAlgo<perf_t, algo_t>(perf_results, workspace_size_limit,
|
|
|
|
&chosen_algo);
|
|
|
|
return chosen_algo;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
VLOG(3) << "choose algo " << algo;
|
|
|
|
return algo;
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
|
|
|
|
size_t workspace_size = 0;
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
|
|
|
|
args.handle, args.idesc.desc(), args.odesc.desc(),
|
|
|
|
args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
|
|
|
|
return workspace_size;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|