You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/expand_op.cc

276 lines
10 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/expand_op.h"
#include <memory>
#include <string>
#include <vector>
namespace paddle {
namespace operators {
using framework::Tensor;
class ExpandOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Expand");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Expand");
auto x_dims = ctx->GetInputDim("X");
auto expand_times = ctx->Attrs().Get<std::vector<int>>("expand_times");
if (expand_times.size() == 0) {
expand_times = std::vector<int>(x_dims.size(), -1);
}
PADDLE_ENFORCE_EQ(
static_cast<size_t>(x_dims.size()), expand_times.size(),
platform::errors::InvalidArgument(
"The number of elements (%d) of 'expand_times' for "
"Op(expand) must be equal to the number of dimensions "
"(%d) of the input.",
expand_times.size(), static_cast<size_t>(x_dims.size())));
PADDLE_ENFORCE_LE(
x_dims.size(), 6,
platform::errors::InvalidArgument(
"The number of dimensions of the input for Op(expand) "
"must not be greater than 6, but the value received is %d.",
x_dims.size()));
std::vector<int64_t> out_shape(x_dims.size());
for (size_t i = 0; i < expand_times.size(); ++i) {
if (x_dims[i] == -1 || expand_times[i] == -1) {
out_shape[i] = -1;
} else {
PADDLE_ENFORCE_GT(
expand_times[i], 0,
platform::errors::InvalidArgument(
"The %uth element of 'expand_times' for Op(expand) must be "
"greater than 0, but the value given is %d.",
i, expand_times[i]));
out_shape[i] = x_dims[i] * expand_times[i];
}
}
ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
if (out_shape[0] == x_dims[0]) {
ctx->ShareLoD("X", "Out");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const override {
if (var_name == "expand_times_tensor" || var_name == "ExpandTimes") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
"X is the input to be expanded.");
AddInput("ExpandTimes",
"(Tensor<int>), optional). If provided, expand according to "
"this given expand times. It has a higher priority than "
"expand_times_tensor and expand_times.")
.AsDispensable();
AddInput("expand_times_tensor",
"(Tensor Tensor<int>), epxand times for X."
"It has a higher priority than expand_times, but a lower priority "
"than ExpandTimes")
.AsDuplicable()
.AsDispensable();
AddOutput("Out",
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
"The rank of Output(Out) have the same with Input(X). "
"After expanding, size of each dimension of Output(Out) is equal "
"to size of the corresponding dimension of Input(X) multiplying "
"the corresponding value given by Attr(expand_times).");
AddAttr<std::vector<int>>("expand_times",
"Expand times number for each dimension.")
.SetDefault({});
AddComment(R"DOC(
8 years ago
Expand operator tiles the input by given times number. You should set times
number for each dimension by providing attribute 'expand_times'. The rank of X
should be in [1, 6]. Please note that size of 'expand_times' must be the same
with X's rank. Following is a using case:
7 years ago
Input(X) is a 3-D tensor with shape [2, 3, 1]:
[
[[1], [2], [3]],
[[4], [5], [6]]
]
Attr(expand_times): [1, 2, 2]
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
[
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
]
)DOC");
}
};
class ExpandGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandGrad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
framework::GradVarName("Out"), "ExpandGrad");
auto x_dims = ctx->GetInputDim("X");
std::vector<int> expand_times =
ctx->Attrs().Get<std::vector<int>>("expand_times");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
size_t start_pos = 0u;
if (!ctx->IsRuntime() && x_dims[0] < 0) {
PADDLE_ENFORCE_EQ(
x_dims[0], out_dims[0],
platform::errors::InvalidArgument(
"The first dimension size (%d) of Input(Out@GRAD) should be "
"equal to the crroresponding dimension size (%d) of Input(X)",
out_dims[0], x_dims[0]));
start_pos = 1u;
}
for (size_t i = start_pos; i < expand_times.size(); ++i) {
if (expand_times[i] == -1) {
continue;
} else {
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(
x_dims[i] * expand_times[i], out_dims[i],
platform::errors::InvalidArgument(
"The %uth dimension size (%d) of Input(Out@GRAD) should be "
"equal to the multiplication of the crroresponding dimension "
"sizes of Input(X) (%d) and expand_times (%d).",
i, out_dims[i], x_dims[i], expand_times[i]));
}
}
}
auto x_grad_name = framework::GradVarName("X");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const override {
if (var_name == "expand_times_tensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
template <typename T>
class ExpandGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("expand_grad");
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetInput("expand_times_tensor", this->Input("expand_times_tensor"));
op->SetInput("ExpandTimes", this->Input("ExpandTimes"));
op->SetAttrMap(this->Attrs());
}
};
template <typename T>
class ExpandDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
if (this->HasInput("expand_times_tensor")) {
op->SetInput("expand_times_tensor", this->Input("expand_times_tensor"));
}
if (this->HasInput("ExpandTimes")) {
op->SetInput("ExpandTimes", this->Input("ExpandTimes"));
}
op->SetAttrMap(this->Attrs());
op->SetType("expand");
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ExpandGradNoNeedBufVarsInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(expand, ops::ExpandOp, ops::ExpandOpMaker,
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
ops::ExpandGradOpMaker<paddle::framework::OpDesc>,
ops::ExpandGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(expand_grad, ops::ExpandGradOp,
ops::ExpandDoubleGradOpMaker<paddle::framework::OpDesc>,
ops::ExpandDoubleGradOpMaker<paddle::imperative::OpBase>,
ops::ExpandGradNoNeedBufVarsInferer);
REGISTER_OP_CPU_KERNEL(
expand, ops::ExpandKernel<paddle::platform::CPUDeviceContext, float>,
ops::ExpandKernel<paddle::platform::CPUDeviceContext, double>,
ops::ExpandKernel<paddle::platform::CPUDeviceContext, int>,
ops::ExpandKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::ExpandKernel<paddle::platform::CPUDeviceContext, bool>);
REGISTER_OP_CPU_KERNEL(
expand_grad,
ops::ExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::ExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::ExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::ExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);