You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/fake_dequantize_op.cc

249 lines
10 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fake_dequantize_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace operators {
template <typename T>
struct DequantizeFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor* scale,
T max_range, framework::Tensor* out) {
auto in_e = framework::EigenVector<T>::Flatten(*in);
const T* scale_factor = scale->data<T>();
auto out_e = framework::EigenVector<T>::Flatten(*out);
auto& dev = *dev_ctx.eigen_device();
out_e.device(dev) = in_e * scale_factor[0] / max_range;
}
};
template <typename T>
struct ChannelDequantizeFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor** scales,
const int scale_num, T max_range, const int quant_axis,
framework::Tensor* out) {
if (scale_num == 1) {
// Dequant op is before quantized op
// Dequantize the weight of quantized op
auto in_dims = in->dims();
const int64_t channel = in_dims[quant_axis];
const T* scale_factor = scales[0]->data<T>();
if (quant_axis == 0) {
for (int64_t i = 0; i < channel; i++) {
T s = scale_factor[i];
framework::Tensor one_channel_in = in->Slice(i, i + 1);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
auto& dev = *dev_ctx.eigen_device();
out_e.device(dev) = in_e * s / max_range;
}
} else if (quant_axis == 1) {
int64_t out_iter = 1;
for (int i = 0; i < quant_axis; i++) {
out_iter *= in_dims[i];
}
int64_t step_i = in->numel() / out_iter;
int64_t step_j = in->numel() / (out_iter * channel);
auto* in_data = in->data<T>();
auto* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
for (int64_t i = 0; i < out_iter; i++) {
for (int64_t j = 0; j < channel; j++) {
auto* cur_in = in_data + i * step_i + j * step_j;
auto* cur_out = out_data + i * step_i + j * step_j;
T s = scale_factor[j];
for (int64_t k = 0; k < step_j; k++) {
*cur_out = (*cur_in) * s / max_range;
++cur_in;
++cur_out;
}
}
}
}
} else if (scale_num == 2) {
// Dequant op is after quantized op
// Dequantize the output tensor of quantized op
int batch_size = in->dims()[0];
int channel = in->dims()[1];
const T* scale_one = scales[0]->data<T>();
const T* scale_two = scales[1]->data<T>();
for (int i = 0; i < batch_size; i++) {
framework::Tensor one_batch_in = in->Slice(i, i + 1).Resize(
framework::slice_ddim(in->dims(), 1, in->dims().size()));
framework::Tensor one_batch_out = out->Slice(i, i + 1).Resize(
framework::slice_ddim(out->dims(), 1, out->dims().size()));
for (int j = 0; j < channel; j++) {
T s = scale_one[j];
framework::Tensor one_channel_in = one_batch_in.Slice(j, j + 1);
framework::Tensor one_channel_out = one_batch_out.Slice(j, j + 1);
auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
auto& dev = *dev_ctx.eigen_device();
out_e.device(dev) = in_e * s * scale_two[0] / max_range;
}
}
}
}
};
template struct DequantizeFunctor<platform::CPUDeviceContext, float>;
template struct DequantizeFunctor<platform::CPUDeviceContext, double>;
template struct ChannelDequantizeFunctor<platform::CPUDeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CPUDeviceContext, double>;
class FakeDequantizeMaxAbsOp : public framework::OperatorWithKernel {
public:
FakeDequantizeMaxAbsOp(const std::string& type,
const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeDequantizeMaxAbs");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
"FakeDequantizeMaxAbs");
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class FakeDequantizeMaxAbsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor) The input with float-32/64 type is the "
"low precision tensor.");
AddInput("Scale", "(float) The scale in quantization stage.");
AddOutput("Out",
"(Tensor) The output is the dequantized high "
"precision tensor.");
AddAttr<float>("max_range", "(float) The max range in quantization stage.");
AddComment(R"DOC(
FakeDequantizeMaxAbsOp operator.
This calculation is an opposite operation of FakeQuantizeMaxAbsOp:
$$Out = \frac{scale*X}{ max_range }$$
)DOC");
}
};
class FakeChannelWiseDequantizeMaxAbsOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
"FakeChannelWiseDequantizeMaxAbs");
OP_INOUT_CHECK(ctx->HasInputs("Scales"), "Input", "Scales",
"FakeChannelWiseDequantizeMaxAbs");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
"FakeChannelWiseDequantizeMaxAbs");
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class FakeChannelWiseDequantizeMaxAbsOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor) The input with float-32/64 type is the "
"low precision tensor.");
AddInput("Scales",
"(Tensors) The scales in quantization stage. "
"Now, `Scales` is a vector with at most two tensors. "
"If Scales has two elements, the second tensor should only have "
"one value.")
.AsDuplicable();
AddOutput("Out",
"(Tensor) The output is the dequantized high "
"precision tensor.");
AddAttr<std::vector<int>>(
"quant_bits",
"Quantization bit numbers in quantization stage. "
"The size of `quant_bits` should be equal to the size of `Scales`.")
.SetDefault({8});
AddAttr<int>("quant_axis",
"(int, default 0) The axis for quantization. "
"For conv2d, depthwise_conv2d, conv2d_transpose "
"and mul, the quant_axis is equal to the cout axis.")
.SetDefault(0)
.AddCustomChecker([](const int& quant_axis) {
PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
platform::errors::InvalidArgument(
"'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
});
AddComment(R"DOC(
FakeChannelWiseDequantizeMaxAbsOp operator.
This calculation is an opposite operation of FakeChannelWiseQuantizeMaxAbsOp:
$$Out_c = \frac{X_c\prod_{i=1}^{n}Scales_{ic}}{\prod_{i=1}^{n}(2^{quant\_bits_i-1}-1)}$$
In the above formula, the range value of $c$ can be represented as $0 \leq c \lt \ the\ channel\ number\ of\ X$.
Besides, the size of $quant\_bits$ should be equal to the size of $Scales$, and it is called $n$ in the formula.
Notes: In general, the per-channel quantization is only applied to weights and the activations use per-layer quantization.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
REGISTER_OPERATOR(
fake_dequantize_max_abs, ops::FakeDequantizeMaxAbsOp,
ops::FakeDequantizeMaxAbsOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(fake_dequantize_max_abs,
ops::FakeDequantizeMaxAbsKernel<CPU, float>,
ops::FakeDequantizeMaxAbsKernel<CPU, double>);
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
REGISTER_OPERATOR(
fake_channel_wise_dequantize_max_abs,
ops::FakeChannelWiseDequantizeMaxAbsOp,
ops::FakeChannelWiseDequantizeMaxAbsOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(fake_channel_wise_dequantize_max_abs,
ops::FakeChannelWiseDequantizeMaxAbsKernel<CPU, float>,
ops::FakeChannelWiseDequantizeMaxAbsKernel<CPU, double>);
REGISTER_OP_VERSION(fake_channel_wise_dequantize_max_abs)
.AddCheckpoint(
R"ROC(add new attributes [quant_axis] for applying per-channel "
"dequantization to conv2d_tranpose and mul ops.)ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"quant_axis", "The axis for dequantization.", 0));