You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.2 KiB
169 lines
5.2 KiB
6 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cstring>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
#include "paddle/fluid/framework/eigen.h"
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
template <typename T>
|
||
|
class SimilarityFocusKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
Tensor* out = context.Output<Tensor>("Out");
|
||
|
const Tensor* x = context.Input<Tensor>("X");
|
||
|
T* out_data = out->mutable_data<T>(context.GetPlace());
|
||
|
const T* x_data = x->data<T>();
|
||
|
|
||
|
int axis = context.Attr<int>("axis");
|
||
|
std::vector<int> indexes = context.Attr<std::vector<int>>("indexes");
|
||
|
|
||
|
int64_t batch_size = x->dims()[0];
|
||
|
int64_t dim[4];
|
||
|
for (int i = 1; i <= 3; ++i) {
|
||
|
dim[i] = x->dims()[i];
|
||
|
}
|
||
|
|
||
|
if (indexes.size() < 1) {
|
||
|
PADDLE_THROW("Indexes' size can not be 0.");
|
||
|
}
|
||
|
for (auto index : indexes) {
|
||
|
if (dim[axis] < index) {
|
||
|
PADDLE_THROW("Index exceeds tensor shape limit.");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int64_t array_size = 1;
|
||
|
for (int i = 1; i <= 3; ++i) {
|
||
|
if (i != axis) {
|
||
|
array_size *= dim[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::vector<std::pair<T, int64_t>> array(array_size);
|
||
|
|
||
|
bool (*cmp)(std::pair<T, int64_t>, std::pair<T, int64_t>) = [](
|
||
|
std::pair<T, int64_t> x, std::pair<T, int64_t> y) {
|
||
|
return x.first > y.first;
|
||
|
};
|
||
|
|
||
|
int64_t (*compute_index)(int64_t*, int, int, int, int) = [](
|
||
|
int64_t* dim, int d1, int d2, int d3, int d4) {
|
||
|
return d1 * dim[1] * dim[2] * dim[3] + d2 * dim[2] * dim[3] +
|
||
|
d3 * dim[3] + d4;
|
||
|
};
|
||
|
|
||
|
memset(out_data, 0, sizeof(T) * batch_size * dim[1] * dim[2] * dim[3]);
|
||
|
for (int i = 0; i < batch_size; ++i) {
|
||
|
for (auto index : indexes) {
|
||
|
if (axis == 1) {
|
||
|
for (int j = 0; j < dim[2]; ++j) {
|
||
|
for (int k = 0; k < dim[3]; ++k) {
|
||
|
array[j * dim[3] + k] = std::make_pair(
|
||
|
x_data[compute_index(dim, i, index, j, k)], j * dim[3] + k);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::sort(array.begin(), array.end(), cmp);
|
||
|
int tag_num = 0;
|
||
|
std::vector<bool> tag2(dim[2]), tag3(dim[3]);
|
||
|
for (auto x : array) {
|
||
|
int idx2 = x.second / dim[3];
|
||
|
int idx3 = x.second % dim[3];
|
||
|
if (tag2[idx2] || tag3[idx3]) {
|
||
|
continue;
|
||
|
}
|
||
|
tag_num++;
|
||
|
tag2[idx2] = true;
|
||
|
tag3[idx3] = true;
|
||
|
for (int j = 0; j < dim[1]; ++j) {
|
||
|
out_data[compute_index(dim, i, j, idx2, idx3)] = 1;
|
||
|
}
|
||
|
if (tag_num == std::min(dim[2], dim[3])) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
} else if (axis == 2) {
|
||
|
for (int j = 0; j < dim[1]; ++j) {
|
||
|
for (int k = 0; k < dim[3]; ++k) {
|
||
|
array[j * dim[3] + k] = std::make_pair(
|
||
|
x_data[compute_index(dim, i, j, index, k)], j * dim[3] + k);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::sort(array.begin(), array.end(), cmp);
|
||
|
int tag_num = 0;
|
||
|
std::vector<bool> tag1(dim[1]), tag3(dim[3]);
|
||
|
for (auto x : array) {
|
||
|
int idx1 = x.second / dim[3];
|
||
|
int idx3 = x.second % dim[3];
|
||
|
if (tag1[idx1] || tag3[idx3]) {
|
||
|
continue;
|
||
|
}
|
||
|
tag_num++;
|
||
|
tag1[idx1] = true;
|
||
|
tag3[idx3] = true;
|
||
|
for (int j = 0; j < dim[2]; ++j) {
|
||
|
out_data[compute_index(dim, i, idx1, j, idx3)] = 1;
|
||
|
}
|
||
|
if (tag_num == std::min(dim[1], dim[3])) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
} else if (axis == 3) {
|
||
|
for (int j = 0; j < dim[1]; ++j) {
|
||
|
for (int k = 0; k < dim[2]; ++k) {
|
||
|
array[j * dim[2] + k] = std::make_pair(
|
||
|
x_data[compute_index(dim, i, j, k, index)], j * dim[2] + k);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::sort(array.begin(), array.end(), cmp);
|
||
|
int tag_num = 0;
|
||
|
std::vector<bool> tag1(dim[1]), tag2(dim[2]);
|
||
|
for (auto x : array) {
|
||
|
int idx1 = x.second / dim[2];
|
||
|
int idx2 = x.second % dim[2];
|
||
|
if (tag1[idx1] || tag2[idx2]) {
|
||
|
continue;
|
||
|
}
|
||
|
tag_num++;
|
||
|
tag1[idx1] = true;
|
||
|
tag2[idx2] = true;
|
||
|
for (int j = 0; j < dim[3]; ++j) {
|
||
|
out_data[compute_index(dim, i, idx1, idx2, j)] = 1;
|
||
|
}
|
||
|
if (tag_num == std::min(dim[1], dim[2])) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
PADDLE_THROW("Axis must be 1 or 2 or 3");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|