You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/spp_op.cc

105 lines
4.2 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/spp_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
class SppOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor) The input tensor of spp operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature.");
AddOutput("Out",
"(Tensor) The output tensor of spp operator."
"N * M."
"M = C * H * W");
7 years ago
AddAttr<int>("pyramid_height", "(int), multi level pooling");
7 years ago
AddAttr<std::string>(
"pooling_type",
"(string), pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.")
.InEnum({"max", "avg"});
AddComment(R"DOC(
"With spatial pyramid pooling, the input image can
be of any sizes. This not only allows arbitrary aspect
ratios, but also allows arbitrary scales. We can resize
the input image to any scale (e.g., min(w, h)=180, 224,
...) and apply the same deep network. When the
input image is at different scales, the network (with
the same filter sizes) will extract features at different
scales. The scales play important roles in traditional
methods.
7 years ago
Input shape: $(N, C_{in}, H_{in}, W_{in})$
Output shape: $(H_{out}, W_{out})$
Where
$$
7 years ago
H_{out} = N \\
7 years ago
W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in}
$$
paper https://arxiv.org/pdf/1406.4729v4.pdf
)DOC");
}
};
class SppOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SppOp"
"should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SppOp should not be null.");
auto in_x_dims = ctx->GetInputDim("X");
int pyramid_height = ctx->Attrs().Get<int>("pyramid_height");
PADDLE_ENFORCE(in_x_dims.size() == 4,
"Spping intput must be of 4-dimensional.");
7 years ago
int outlen = ((std::pow(4, pyramid_height) - 1) / (4 - 1)) * in_x_dims[1];
std::vector<int64_t> output_shape({in_x_dims[0], outlen});
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}
};
class SppOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input(X@GRAD) should not be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
REGISTER_OPERATOR(
spp, ops::SppOp, ops::SppOpMaker,
paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
REGISTER_OPERATOR(spp_grad, ops::SppOpGrad);
REGISTER_OP_CPU_KERNEL(
spp, ops::SppKernel<paddle::platform::CPUDeviceContext, float>,
ops::SppKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
spp_grad, ops::SppGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::SppGradKernel<paddle::platform::CPUDeviceContext, double>);