You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.4 KiB
106 lines
3.4 KiB
6 years ago
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
#include "paddle/fluid/framework/eigen.h"
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
using LoDTensor = framework::LoDTensor;
|
||
|
|
||
|
template <typename T>
|
||
|
class CVMOpKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
const LoDTensor* x = context.Input<LoDTensor>("X");
|
||
|
const T* x_data = x->data<T>();
|
||
|
auto lod = x->lod()[0];
|
||
|
int64_t item_size = x->numel() / x->dims()[0];
|
||
|
int offset = 2;
|
||
|
if (!context.Attr<bool>("use_cvm")) {
|
||
|
item_size -= offset;
|
||
|
}
|
||
|
LoDTensor* y = context.Output<LoDTensor>("Y");
|
||
|
T* y_data = y->mutable_data<T>(context.GetPlace());
|
||
|
|
||
|
int seq_num = static_cast<int>(lod.size()) - 1;
|
||
|
for (int i = 0; i < seq_num; ++i) {
|
||
|
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
|
||
|
|
||
|
for (int j = 0; j < seq_len; ++j) {
|
||
|
if (context.Attr<bool>("use_cvm")) {
|
||
|
std::memcpy(y_data, x_data, item_size * sizeof(T));
|
||
|
y_data[0] = log(y_data[0] + 1);
|
||
|
y_data[1] = log(y_data[1] + 1) - y_data[0];
|
||
|
x_data += item_size;
|
||
|
y_data += item_size;
|
||
|
} else {
|
||
|
std::memcpy(y_data, x_data + offset, item_size * sizeof(T));
|
||
|
x_data += item_size + offset;
|
||
|
y_data += item_size;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class CVMGradOpKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
LoDTensor* dx = context.Output<LoDTensor>(framework::GradVarName("X"));
|
||
|
T* dx_data = dx->mutable_data<T>(context.GetPlace());
|
||
|
|
||
|
const Tensor* cvm = context.Input<Tensor>("CVM");
|
||
|
const T* cvm_data = cvm->data<T>();
|
||
|
int offset = 2;
|
||
|
const framework::LoDTensor* dOut =
|
||
|
context.Input<framework::LoDTensor>(framework::GradVarName("Y"));
|
||
|
const T* dout_data = dOut->data<T>();
|
||
|
|
||
|
auto lod = dx->lod()[0];
|
||
|
int64_t item_size = dx->numel() / dx->dims()[0];
|
||
|
if (!context.Attr<bool>("use_cvm")) {
|
||
|
item_size -= offset;
|
||
|
}
|
||
|
|
||
|
int seq_num = static_cast<int>(lod.size()) - 1;
|
||
|
for (int i = 0; i < seq_num; ++i) {
|
||
|
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
|
||
|
|
||
|
for (int j = 0; j < seq_len; ++j) {
|
||
|
if (context.Attr<bool>("use_cvm")) {
|
||
|
std::memcpy(dx_data, dout_data, item_size * sizeof(T));
|
||
|
dx_data[0] = cvm_data[0];
|
||
|
dx_data[1] = cvm_data[1];
|
||
|
dx_data += item_size;
|
||
|
dout_data += item_size;
|
||
|
} else {
|
||
|
std::memcpy(dx_data + offset, dout_data, item_size * sizeof(T));
|
||
|
dx_data[0] = cvm_data[0];
|
||
|
dx_data[1] = cvm_data[1];
|
||
|
dx_data += item_size + offset;
|
||
|
dout_data += item_size;
|
||
|
}
|
||
|
}
|
||
|
cvm_data += offset;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|