|
|
|
import collections
|
|
|
|
from paddle.proto.ModelConfig_pb2 import ModelConfig
|
|
|
|
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
|
|
|
|
from . import parameters as v2_parameters
|
|
|
|
import numpy
|
|
|
|
import py_paddle.swig_paddle as api
|
|
|
|
from py_paddle import DataProviderConverter
|
|
|
|
|
|
|
|
__all__ = ['ITrainer', 'SGDTrainer', 'CompleteTrainOneBatch', 'BaseEvent']
|
|
|
|
|
|
|
|
|
|
|
|
class BaseEvent(object):
|
|
|
|
"""
|
|
|
|
Just a marker class
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class CompleteTrainOneBatch(BaseEvent):
|
|
|
|
"""
|
|
|
|
Event On One Batch Training Complete.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, pass_id, batch_id, cost, parameters):
|
|
|
|
self.pass_id = pass_id
|
|
|
|
self.batch_id = batch_id
|
|
|
|
self.cost = cost
|
|
|
|
self.parameters = parameters
|
|
|
|
|
|
|
|
|
|
|
|
def default_event_handler(event):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class ITrainer(object):
|
|
|
|
def train(self,
|
|
|
|
train_data_reader,
|
|
|
|
topology,
|
|
|
|
parameters,
|
|
|
|
test_data_reader=None,
|
|
|
|
event_handler=None):
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
|
|
class LazyParameterPool(v2_parameters.IParameterPool):
|
|
|
|
"""
|
|
|
|
Lazy Parameter Pool stores a reference to GradientMachine. User could invoke
|
|
|
|
`get_parameter` if needed, but the operation is lazy. It means the parameter
|
|
|
|
will only fetched from GPU or Parameter Server if `get_parameter` is
|
|
|
|
invoked. Also, set flag = writable will make a extra host2device copy after
|
|
|
|
reading/modifying parameter.
|
|
|
|
|
|
|
|
This class is not exposed to User. User should treat this class as a normal
|
|
|
|
IParameterPool.
|
|
|
|
|
|
|
|
See IParameterPool for usage documentation.
|
|
|
|
|
|
|
|
:type __gradient_machine__: api.GradientMachine
|
|
|
|
"""
|
|
|
|
|
|
|
|
def get_parameter(self, name, flag=v2_parameters.ParameterFlag.READ_WRITE):
|
|
|
|
param = filter(lambda x: x.getName() == name,
|
|
|
|
self.__gradient_machine__.getParameters())
|
|
|
|
if len(param) == 0:
|
|
|
|
raise ValueError("Cannot found parameter with name %s" % name)
|
|
|
|
elif len(param) > 1:
|
|
|
|
raise RuntimeError("Unexpected branch")
|
|
|
|
else:
|
|
|
|
conf = param[0].getConfig().toProto()
|
|
|
|
param = param[0].getBuf(api.PARAMETER_VALUE)
|
|
|
|
assert isinstance(param, api.Vector)
|
|
|
|
assert isinstance(conf, ParameterConfig)
|
|
|
|
|
|
|
|
shape = map(int, conf.dims)
|
|
|
|
if api.isUsingGpu():
|
|
|
|
arr = param.copyToNumpyArray().reshape(shape)
|
|
|
|
if flag & v2_parameters.ParameterFlag.WRITE_ONLY:
|
|
|
|
self.need_copy = True
|
|
|
|
self.arrays[name] = arr
|
|
|
|
else:
|
|
|
|
arr = param.toNumpyArrayInplace().reshape(shape)
|
|
|
|
return arr
|
|
|
|
|
|
|
|
def get_names(self):
|
|
|
|
return [
|
|
|
|
param.getName()
|
|
|
|
for param in self.__gradient_machine__.getParameters()
|
|
|
|
]
|
|
|
|
|
|
|
|
def __init__(self, gradient_machine):
|
|
|
|
self.__gradient_machine__ = gradient_machine
|
|
|
|
self.need_copy = False
|
|
|
|
self.arrays = dict()
|
|
|
|
|
|
|
|
|
|
|
|
class CustomizeUpdateEquation(object):
|
|
|
|
def __init__(self, callback):
|
|
|
|
self.__callback__ = callback
|
|
|
|
if self.__callback__.func_code.co_argcount < 2:
|
|
|
|
raise ValueError(
|
|
|
|
"The update equation at least should contain 2 arguments, "
|
|
|
|
"first is value, second is gradient")
|
|
|
|
|
|
|
|
self.local_params_count = self.__callback__.func_code.co_argcount - 2
|
|
|
|
self.local_params = dict()
|
|
|
|
|
|
|
|
def enable_types(self):
|
|
|
|
return [api.PARAMETER_VALUE, api.PARAMETER_GRADIENT]
|
|
|
|
|
|
|
|
def init(self, gradient_machine):
|
|
|
|
assert isinstance(gradient_machine, api.GradientMachine)
|
|
|
|
for param in gradient_machine.getParameters():
|
|
|
|
conf = param.getConfig().toProto()
|
|
|
|
shape = map(int, conf.dims)
|
|
|
|
self.local_params[conf.name] = []
|
|
|
|
for _ in xrange(self.local_params_count):
|
|
|
|
self.local_params[conf.name].append(
|
|
|
|
numpy.zeros(
|
|
|
|
shape=shape, dtype='float32'))
|
|
|
|
|
|
|
|
def create_local_updater(self):
|
|
|
|
return self
|
|
|
|
|
|
|
|
def startPass(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def finishPass(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def startBatch(self, batch_size):
|
|
|
|
return api.PASS_TRAIN
|
|
|
|
|
|
|
|
def finishBatch(self, cost):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def update(self, param):
|
|
|
|
conf = param.getConfig().toProto()
|
|
|
|
shape = map(int, conf.dims)
|
|
|
|
if not api.isUsingGpu():
|
|
|
|
v = param.getBuf(api.PARAMETER_VALUE).toNumpyArrayInplace().reshape(
|
|
|
|
shape)
|
|
|
|
g = param.getBuf(api.PARAMETER_GRADIENT).toNumpyArrayInplace(
|
|
|
|
).reshape(shape)
|
|
|
|
|
|
|
|
else:
|
|
|
|
v = param.getBuf(api.PARAMETER_VALUE).copyToNumpyArray().reshape(
|
|
|
|
shape)
|
|
|
|
g = param.getBuf(api.PARAMETER_GRADIENT).copyToNumpyArray().reshape(
|
|
|
|
shape)
|
|
|
|
|
|
|
|
args = [v, g]
|
|
|
|
for arg in self.local_params[conf.name]:
|
|
|
|
args.append(arg)
|
|
|
|
self.__callback__(*args)
|
|
|
|
|
|
|
|
if api.isUsingGpu():
|
|
|
|
param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(v.flatten(
|
|
|
|
).astype('float32'))
|
|
|
|
# discard gradient changed.
|
|
|
|
|
|
|
|
|
|
|
|
class SGDTrainer(ITrainer):
|
|
|
|
def __init__(self, update_equation):
|
|
|
|
"""
|
|
|
|
Simple SGD Trainer.
|
|
|
|
|
|
|
|
:param update_equation: Maybe we should give a DSL for update equation?
|
|
|
|
"""
|
|
|
|
if callable(update_equation):
|
|
|
|
update_equation = CustomizeUpdateEquation(update_equation)
|
|
|
|
|
|
|
|
self.__optimizer__ = update_equation
|
|
|
|
|
|
|
|
def train(self,
|
|
|
|
train_data_reader,
|
|
|
|
topology,
|
|
|
|
parameters,
|
|
|
|
num_passes=1,
|
|
|
|
test_data_reader=None,
|
|
|
|
event_handler=None,
|
|
|
|
batch_size=32,
|
|
|
|
data_types=None):
|
|
|
|
"""
|
|
|
|
Training method. Will train num_passes of input data.
|
|
|
|
|
|
|
|
:param train_data_reader:
|
|
|
|
:param topology: Network Topology, a protobuf ModelConfig message.
|
|
|
|
:param parameters: The parameter pools.
|
|
|
|
:param num_passes: The total train passes.
|
|
|
|
:param test_data_reader:
|
|
|
|
:param event_handler: Event handler. A method will be invoked when event
|
|
|
|
occurred.
|
|
|
|
:type event_handler: (BaseEvent) => None
|
|
|
|
:param batch_size: Not important, will be removed after data refactor.
|
|
|
|
:param data_types: Not important, will be removed after data refactor.
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
if event_handler is None:
|
|
|
|
event_handler = default_event_handler
|
|
|
|
|
|
|
|
__check_train_args__(**locals())
|
|
|
|
|
|
|
|
gm = api.GradientMachine.createFromConfigProto(
|
|
|
|
topology, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types())
|
|
|
|
assert isinstance(gm, api.GradientMachine)
|
|
|
|
__copy_parameter_from_pool__(gm, parameters)
|
|
|
|
|
|
|
|
updater = self.__optimizer__.create_local_updater()
|
|
|
|
updater.init(gm)
|
|
|
|
|
|
|
|
gm.start()
|
|
|
|
out_args = api.Arguments.createArguments(0)
|
|
|
|
|
|
|
|
data_types_lists = []
|
|
|
|
for each in topology.input_layer_names:
|
|
|
|
if each not in data_types:
|
|
|
|
raise ValueError()
|
|
|
|
data_types_lists.append(data_types[each])
|
|
|
|
|
|
|
|
converter = DataProviderConverter(input_types=data_types_lists)
|
|
|
|
|
|
|
|
for pass_id in xrange(num_passes):
|
|
|
|
updater.startPass()
|
|
|
|
for batch_id, data_batch in enumerate(
|
|
|
|
__data_reader_to_batch__(train_data_reader, batch_size,
|
|
|
|
topology)):
|
|
|
|
pass_type = updater.startBatch(len(data_batch))
|
|
|
|
gm.forwardBackward(converter(data_batch), out_args, pass_type)
|
|
|
|
for each_param in gm.getParameters():
|
|
|
|
updater.update(each_param)
|
|
|
|
# Get cost. We use numpy to calculate total cost for this batch.
|
|
|
|
cost_vec = out_args.getSlotValue(0)
|
|
|
|
cost_vec = cost_vec.copyToNumpyMat()
|
|
|
|
cost = cost_vec.sum() / len(data_batch)
|
|
|
|
updater.finishBatch(cost)
|
|
|
|
pool = LazyParameterPool(gradient_machine=gm)
|
|
|
|
event_handler(
|
|
|
|
CompleteTrainOneBatch(
|
|
|
|
pass_id=pass_id,
|
|
|
|
batch_id=batch_id,
|
|
|
|
cost=cost,
|
|
|
|
parameters=pool))
|
|
|
|
|
|
|
|
if pool.need_copy:
|
|
|
|
__copy_parameter_from_lazy_pool__(gm, pool)
|
|
|
|
|
|
|
|
updater.finishPass()
|
|
|
|
gm.finish()
|
|
|
|
|
|
|
|
|
|
|
|
def __data_reader_to_batch__(reader, batch_size, topology):
|
|
|
|
"""
|
|
|
|
This function is not important, and will be removed when data refactored.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def input_reorder(func):
|
|
|
|
for item in func():
|
|
|
|
retv = []
|
|
|
|
for __layer_name__ in topology.input_layer_names:
|
|
|
|
retv.append(item[__layer_name__])
|
|
|
|
yield retv
|
|
|
|
|
|
|
|
return __generator_to_batch__(input_reorder(reader), batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
|
|
def __generator_to_batch__(generator, batch_size):
|
|
|
|
"""
|
|
|
|
This function is not important, and will be removed when data refactored.
|
|
|
|
"""
|
|
|
|
ret_val = list()
|
|
|
|
for each_item in generator:
|
|
|
|
ret_val.append(each_item)
|
|
|
|
if len(ret_val) == batch_size:
|
|
|
|
yield ret_val
|
|
|
|
ret_val = list()
|
|
|
|
if len(ret_val) != 0:
|
|
|
|
yield ret_val
|
|
|
|
|
|
|
|
|
|
|
|
def __copy_parameter_from_lazy_pool__(gm, pool):
|
|
|
|
assert isinstance(pool, LazyParameterPool)
|
|
|
|
for each_param_name in pool.arrays.keys():
|
|
|
|
param = filter(lambda x: x.getName() == each_param_name,
|
|
|
|
gm.getParameters())
|
|
|
|
assert len(param) == 1
|
|
|
|
param = param[0]
|
|
|
|
param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(pool.arrays[
|
|
|
|
each_param_name].flatten().astype('float32'))
|
|
|
|
|
|
|
|
|
|
|
|
def __copy_parameter_from_pool__(gm, pool):
|
|
|
|
"""
|
|
|
|
|
|
|
|
:param gm:
|
|
|
|
:type gm: api.GradientMachine
|
|
|
|
:param pool:
|
|
|
|
:type pool: v2_parameters.IParameterPool
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
assert isinstance(pool, v2_parameters.IParameterPool)
|
|
|
|
for each_param in gm.getParameters():
|
|
|
|
name = each_param.getName()
|
|
|
|
param = pool.get_parameter(name, v2_parameters.ParameterFlag.READ_ONLY)
|
|
|
|
each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(param.flatten(
|
|
|
|
).astype('float32'))
|
|
|
|
|
|
|
|
|
|
|
|
def __check_train_args__(train_data_reader, topology, parameters,
|
|
|
|
test_data_reader, event_handler, **kwargs):
|
|
|
|
"""
|
|
|
|
Check train function's argument types
|
|
|
|
"""
|
|
|
|
if not callable(train_data_reader) or not isinstance(train_data_reader(),
|
|
|
|
collections.Iterator):
|
|
|
|
raise ValueError('train_data_reader should be a function, '
|
|
|
|
'which can return a iterator')
|
|
|
|
|
|
|
|
if test_data_reader is not None:
|
|
|
|
if not callable(test_data_reader) or not isinstance(
|
|
|
|
test_data_reader(), collections.Iterator):
|
|
|
|
raise ValueError('test_data_reader should be a function, which can '
|
|
|
|
'return a iterator')
|
|
|
|
|
|
|
|
if not isinstance(topology, ModelConfig):
|
|
|
|
raise ValueError('topology should be a model config')
|
|
|
|
|
|
|
|
if not isinstance(parameters, v2_parameters.IParameterPool):
|
|
|
|
raise ValueError('parameters should be a parameter pool')
|
|
|
|
|
|
|
|
if not callable(event_handler):
|
|
|
|
raise ValueError('event handler should be a function')
|