You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
5.3 KiB
134 lines
5.3 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/operators/adam_op.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
class AdamOp : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
|
||
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||
|
"Input(Param) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||
|
"Input(Grad) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Moment1"),
|
||
|
"Input(Moment1) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Moment2"),
|
||
|
"Input(Moment2) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
||
|
"Input(LearningRate) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
|
||
|
"Input(Beta1Pow) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
|
||
|
"Input(Beta2Pow) of AdamOp should not be null.");
|
||
|
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||
|
"Output(ParamOut) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
|
||
|
"Output(Moment1Out) of AdamOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
|
||
|
"Output(Moment2Out) of AdamOp should not be null.");
|
||
|
|
||
|
auto lr_dims = ctx->GetInputDim("LearningRate");
|
||
|
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
|
||
|
"Learning rate should have 1 dimension");
|
||
|
auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
|
||
|
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
|
||
|
"Beta1 power accumulator should have 1 dimension");
|
||
|
auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
|
||
7 years ago
|
PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
|
||
|
"Beta2 power accumulator should have 1 dimension");
|
||
7 years ago
|
|
||
|
auto param_dims = ctx->GetInputDim("Param");
|
||
|
PADDLE_ENFORCE_EQ(
|
||
|
param_dims, ctx->GetInputDim("Grad"),
|
||
|
"Param and Grad input of AdamOp should have same dimension");
|
||
|
PADDLE_ENFORCE_EQ(
|
||
|
param_dims, ctx->GetInputDim("Moment1"),
|
||
7 years ago
|
"Param and Moment1 input of AdamOp should have same dimension");
|
||
7 years ago
|
PADDLE_ENFORCE_EQ(
|
||
|
param_dims, ctx->GetInputDim("Moment2"),
|
||
7 years ago
|
"Param and Moment2 input of AdamOp should have same dimension");
|
||
7 years ago
|
|
||
|
ctx->SetOutputDim("ParamOut", param_dims);
|
||
|
ctx->SetOutputDim("Moment1Out", param_dims);
|
||
|
ctx->SetOutputDim("Moment2Out", param_dims);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
7 years ago
|
AdamOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
||
7 years ago
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||
|
AddInput("Param", "(Tensor) Input parameter");
|
||
|
AddInput("Grad", "(Tensor) Input gradient");
|
||
|
AddInput("LearningRate", "(Tensor) Learning rate");
|
||
|
AddInput("Moment1", "(Tensor) Input first moment");
|
||
|
AddInput("Moment2", "(Tensor) Input second moment");
|
||
|
AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
|
||
|
AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");
|
||
|
|
||
|
AddOutput("ParamOut", "(Tensor) Output parameter");
|
||
|
AddOutput("Moment1Out", "(Tensor) Output first moment");
|
||
|
AddOutput("Moment2Out", "(Tensor) Output second moment");
|
||
|
|
||
|
AddAttr<float>("beta1",
|
||
|
"(float, default 0.9) "
|
||
|
"Exponential decay rate for the "
|
||
|
"first moment estimates.")
|
||
|
.SetDefault(0.9f);
|
||
|
AddAttr<float>("beta2",
|
||
|
"(float, default 0.999) "
|
||
|
"exponential decay rate for the "
|
||
|
"second moment estimates.")
|
||
|
.SetDefault(0.999f);
|
||
|
AddAttr<float>("epsilon",
|
||
|
"(float, default 1.0e-8) "
|
||
|
"Constant for numerical stability")
|
||
|
.SetDefault(1.0e-8f);
|
||
|
|
||
|
AddComment(R"DOC(
|
||
7 years ago
|
Adam Optimizer.
|
||
7 years ago
|
|
||
|
This implements the Adam optimizer from Section 2 of the Adam
|
||
7 years ago
|
paper : https://arxiv.org/abs/1412.6980.
|
||
|
Adam is a first-order gradient-based optimization method based on
|
||
|
adaptive estimates of lower-order moments.
|
||
7 years ago
|
|
||
|
Adam updates:
|
||
|
|
||
7 years ago
|
$$
|
||
|
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
|
||
|
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
|
||
|
learning\_rate = learning\_rate *
|
||
|
\frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
|
||
|
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
|
||
|
$$
|
||
7 years ago
|
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
|
||
7 years ago
|
REGISTER_OP_CPU_KERNEL(
|
||
|
adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);
|