You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
1.9 KiB
61 lines
1.9 KiB
8 years ago
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class MNISTloader():
|
||
|
def __init__(self,
|
||
|
data_path="./data/mnist_data/",
|
||
|
batch_size=60,
|
||
|
process='train'):
|
||
|
self.batch_size = batch_size
|
||
|
self.data_path = data_path
|
||
|
self._pointer = 0
|
||
|
self.image_batches = np.array([])
|
||
|
self.process = process
|
||
|
|
||
|
def _extract_images(self, filename, n):
|
||
|
f = open(filename, 'rb')
|
||
|
f.read(16)
|
||
|
data = np.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28))
|
||
|
#Mapping data into [-1, 1]
|
||
|
data = data / 255. * 2. - 1
|
||
|
data_batches = np.split(data, 60000 / self.batch_size, 0)
|
||
|
|
||
|
f.close()
|
||
|
|
||
|
return data_batches
|
||
|
|
||
|
@property
|
||
|
def pointer(self):
|
||
|
return self._pointer
|
||
|
|
||
|
def load_data(self):
|
||
|
TRAIN_IMAGES = '%s/train-images-idx3-ubyte' % self.data_path
|
||
|
TEST_IMAGES = '%s/t10k-images-idx3-ubyte' % self.data_path
|
||
|
|
||
|
if self.process == 'train':
|
||
|
self.image_batches = self._extract_images(TRAIN_IMAGES, 60000)
|
||
|
else:
|
||
|
self.image_batches = self._extract_images(TEST_IMAGES, 10000)
|
||
|
|
||
|
def next_batch(self):
|
||
|
batch = self.image_batches[self._pointer]
|
||
|
self._pointer = (self._pointer + 1) % (60000 / self.batch_size)
|
||
|
return np.array(batch)
|
||
|
|
||
|
def reset_pointer(self):
|
||
|
self._pointer = 0
|