You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
3.9 KiB
114 lines
3.9 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
namespace math {
|
||
|
|
||
|
template <typename Place, typename T>
|
||
|
class LoDTensor2BatchFunctor {
|
||
|
public:
|
||
|
void operator()(const platform::DeviceContext& context,
|
||
|
const framework::LoDTensor& lod_tensor,
|
||
|
framework::LoDTensor& batch, const bool is_reverse) const {
|
||
|
auto lods = lod_tensor->lod();
|
||
|
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
||
|
auto lod = lods[0];
|
||
|
|
||
|
// Calculate the length of each sequence and
|
||
|
// sort sequence index by the length.
|
||
|
// example: sequences = {s0, s1, s2}
|
||
|
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
|
||
|
// seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
|
||
|
//
|
||
|
struct SeqInfo {
|
||
|
SeqInfo(int start, int length, int seq_idx)
|
||
|
: start(start), length(length), seqIdx(seq_idx) {}
|
||
|
int start;
|
||
|
int length;
|
||
|
int seq_idx;
|
||
|
};
|
||
|
|
||
|
std::vector<SeqInfo> seq_info;
|
||
|
for (size_t seq_id = 0; seq_id < lod.size(); ++seq_id) {
|
||
|
int length = lod[seq_id + 1] - lod[seq_id];
|
||
|
seq_info.emplace_back(lod[seq_id], length, seq_id);
|
||
|
}
|
||
|
|
||
|
std::sort(seq_info.begin(), seq_info.end(),
|
||
|
[](SeqInfo a, SeqInfo b) { return a.length > b.length; });
|
||
|
|
||
|
// calculate the start position of each batch
|
||
|
// (numBatch equal the maxLength of sequences)
|
||
|
// example: sequences = {s0, s1, s2}
|
||
|
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
|
||
|
// num_batch = 5,
|
||
|
// batchIndex = {b0, b1, b2, b3, b4}
|
||
|
// b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
|
||
|
// batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
|
||
|
// seq2batch_idx[12] = {4, 0, 9,
|
||
|
// 5, 1, 10,
|
||
|
// 6, 2, 11,
|
||
|
// 7, 3,
|
||
|
// 8}
|
||
|
|
||
|
// The batch number represents batch size after rearranging the
|
||
|
// input LodTensor. It is also the maximum length of input sequence.
|
||
|
auto batch_lods = batch->lod();
|
||
|
if (!batch_lods) {
|
||
|
batch_lods->resize(2);
|
||
|
}
|
||
|
// batch_lods[0] is the start positions for batch LoDTensor
|
||
|
int num_batch = (size_t)seq_info[0].length;
|
||
|
batch_lods[0]->resize(num_batch + 1);
|
||
|
// batch_lods[1] is the raw index in the input LoDTensor
|
||
|
auto dims = lod_tensor->dims();
|
||
|
batch_lods[1]->resize(dims[0]);
|
||
|
|
||
|
auto* batch_starts = batch_lods[0].data();
|
||
|
auto* seq2batch_idx = batch_lods[1].data();
|
||
|
batch_starts[0] = 0;
|
||
|
for (size_t n = 0; n < num_batch; n++) {
|
||
|
int batch_id = batch_starts[n];
|
||
|
for (size_t i = 0; i < seq_info.size(); ++i) {
|
||
|
size_t seq_len = seq_info[i].length;
|
||
|
int start = seq_info[i].start;
|
||
|
if (n < seq_len) {
|
||
|
if (!is_reverse) {
|
||
|
seq2batch_idx[batch_id] = start + n;
|
||
|
} else {
|
||
|
seq2batch_idx[batch_id] = start + seq_len - 1 - n;
|
||
|
}
|
||
|
batch_id++;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
batch_starts[n + 1] = batch_id;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Place, typename T>
|
||
|
class Batch2LoDTensor2Functor {
|
||
|
public:
|
||
|
void operator()(const platform::DeviceContext& context,
|
||
|
const framework::LoDTensor& batch,
|
||
|
framework::LoDTensor& lod_tensor,
|
||
|
const bool is_reverse) const;
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|