|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/details/reduce_op_handle.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace framework {
|
|
|
|
namespace details {
|
|
|
|
namespace f = paddle::framework;
|
|
|
|
namespace p = paddle::platform;
|
|
|
|
|
|
|
|
// test data amount
|
|
|
|
const f::DDim kDims = {20, 20};
|
|
|
|
|
|
|
|
struct TestReduceOpHandle {
|
|
|
|
bool use_gpu_;
|
|
|
|
Scope g_scope_;
|
|
|
|
std::vector<Scope *> local_scopes_;
|
|
|
|
std::vector<Scope *> param_scopes_;
|
|
|
|
std::unique_ptr<OpHandleBase> op_handle_;
|
|
|
|
std::vector<std::unique_ptr<VarHandleBase>> vars_;
|
|
|
|
std::vector<p::Place> gpu_list_;
|
|
|
|
std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void WaitAll() {
|
|
|
|
for (size_t j = 0; j < ctxs_.size(); ++j) {
|
|
|
|
ctxs_[j]->Wait();
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
if (nccl_ctxs_) {
|
|
|
|
nccl_ctxs_->WaitAll();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void InitCtxOnGpu(bool use_gpu) {
|
|
|
|
use_gpu_ = use_gpu;
|
|
|
|
if (use_gpu) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
int count = p::GetCUDADeviceCount();
|
|
|
|
if (count <= 1) {
|
|
|
|
LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
|
|
|
|
"device count is "
|
|
|
|
<< count;
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < count; ++i) {
|
|
|
|
auto p = p::CUDAPlace(i);
|
|
|
|
gpu_list_.push_back(p);
|
|
|
|
ctxs_.emplace_back(new p::CUDADeviceContext(p));
|
|
|
|
}
|
|
|
|
nccl_ctxs_.reset(new platform::NCCLContextMap(gpu_list_));
|
|
|
|
#else
|
|
|
|
PADDLE_THROW("CUDA is not support.");
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
int count = 8;
|
|
|
|
for (int i = 0; i < count; ++i) {
|
|
|
|
auto p = p::CPUPlace();
|
|
|
|
gpu_list_.push_back(p);
|
|
|
|
ctxs_.emplace_back(new p::CPUDeviceContext(p));
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
nccl_ctxs_.reset(nullptr);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void InitReduceOp(size_t out_scope_idx) {
|
|
|
|
// init scope
|
|
|
|
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
|
|
|
local_scopes_.push_back(&(g_scope_.NewScope()));
|
|
|
|
Scope &local_scope = local_scopes_.back()->NewScope();
|
|
|
|
*local_scopes_.back()
|
|
|
|
->Var(details::kLocalExecScopeName)
|
|
|
|
->GetMutable<Scope *>() = &local_scope;
|
|
|
|
local_scope.Var("input");
|
|
|
|
param_scopes_.emplace_back(&local_scope);
|
|
|
|
}
|
|
|
|
param_scopes_[out_scope_idx]->Var("out");
|
|
|
|
|
|
|
|
if (use_gpu_) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
op_handle_.reset(
|
|
|
|
new ReduceOpHandle(local_scopes_, gpu_list_, nccl_ctxs_.get()));
|
|
|
|
#else
|
|
|
|
PADDLE_THROW("CUDA is not support.");
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
op_handle_.reset(
|
|
|
|
new ReduceOpHandle(local_scopes_, gpu_list_, nccl_ctxs_.get()));
|
|
|
|
#else
|
|
|
|
op_handle_.reset(new ReduceOpHandle(local_scopes_, gpu_list_));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// init op handle
|
|
|
|
// add input
|
|
|
|
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
|
|
|
if (!use_gpu_) {
|
|
|
|
op_handle_->SetDeviceContext(gpu_list_[j], ctxs_[j].get());
|
|
|
|
}
|
|
|
|
auto *in_var_handle = new VarHandle(1, j, "input", gpu_list_[j]);
|
|
|
|
in_var_handle->generated_op_ = nullptr;
|
|
|
|
vars_.emplace_back(in_var_handle);
|
|
|
|
op_handle_->AddInput(in_var_handle);
|
|
|
|
}
|
|
|
|
|
|
|
|
// add dummy var
|
|
|
|
vars_.emplace_back(new DummyVarHandle());
|
|
|
|
DummyVarHandle *in_dummy_var_handle =
|
|
|
|
static_cast<DummyVarHandle *>(vars_.back().get());
|
|
|
|
in_dummy_var_handle->generated_op_ = nullptr;
|
|
|
|
op_handle_->AddInput(in_dummy_var_handle);
|
|
|
|
|
|
|
|
// add output
|
|
|
|
auto *out_var_handle =
|
|
|
|
new VarHandle(2, out_scope_idx, "out", gpu_list_[out_scope_idx]);
|
|
|
|
vars_.emplace_back(out_var_handle);
|
|
|
|
op_handle_->AddOutput(out_var_handle);
|
|
|
|
|
|
|
|
// add dummy var
|
|
|
|
vars_.emplace_back(new DummyVarHandle());
|
|
|
|
DummyVarHandle *dummy_var_handle =
|
|
|
|
static_cast<DummyVarHandle *>(vars_.back().get());
|
|
|
|
op_handle_->AddOutput(dummy_var_handle);
|
|
|
|
}
|
|
|
|
|
|
|
|
void TestReduceSelectedRows(size_t output_scope_idx) {
|
|
|
|
int height = kDims[0] * 2;
|
|
|
|
std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
|
|
|
|
2, 4, 6, 3, 1, 1, 1, 1, 3, 7};
|
|
|
|
std::vector<float> send_vector(f::product(kDims));
|
|
|
|
for (size_t k = 0; k < send_vector.size(); ++k) {
|
|
|
|
send_vector[k] = k;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
|
|
|
|
++input_scope_idx) {
|
|
|
|
auto in_var = param_scopes_[input_scope_idx]->FindVar("input");
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(in_var);
|
|
|
|
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
|
|
|
|
auto value = in_selected_rows->mutable_value();
|
|
|
|
value->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
|
|
|
|
|
|
|
|
in_selected_rows->set_height(height);
|
|
|
|
in_selected_rows->set_rows(rows);
|
|
|
|
|
|
|
|
paddle::framework::TensorFromVector<float>(
|
|
|
|
send_vector, *(ctxs_[input_scope_idx]), value);
|
|
|
|
value->Resize(kDims);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto out_var = param_scopes_[output_scope_idx]->FindVar("out");
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(out_var);
|
|
|
|
auto out_selected_rows = out_var->GetMutable<f::SelectedRows>();
|
|
|
|
|
|
|
|
auto in_var = param_scopes_[output_scope_idx]->FindVar("input");
|
|
|
|
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
|
|
|
|
|
|
|
|
out_selected_rows->mutable_value()->ShareDataWith(
|
|
|
|
in_selected_rows->value());
|
|
|
|
|
|
|
|
op_handle_->Run(false);
|
|
|
|
|
|
|
|
WaitAll();
|
|
|
|
|
|
|
|
p::CPUPlace cpu_place;
|
|
|
|
|
|
|
|
auto &out_select_rows = out_var->Get<f::SelectedRows>();
|
|
|
|
auto rt = out_select_rows.value();
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal.");
|
|
|
|
for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
|
|
|
|
PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k % rows.size()]);
|
|
|
|
}
|
|
|
|
|
|
|
|
f::Tensor result_tensor;
|
|
|
|
f::TensorCopySync(rt, cpu_place, &result_tensor);
|
|
|
|
float *ct = result_tensor.data<float>();
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) {
|
|
|
|
ASSERT_NEAR(ct[j], send_vector[j % send_vector.size()], 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void TestReduceLodTensors(size_t output_scope_idx) {
|
|
|
|
std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
|
|
|
|
for (size_t k = 0; k < send_vector.size(); ++k) {
|
|
|
|
send_vector[k] = k;
|
|
|
|
}
|
|
|
|
f::LoD lod{{0, 10, 20}};
|
|
|
|
|
|
|
|
for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
|
|
|
|
++input_scope_idx) {
|
|
|
|
auto in_var = param_scopes_[input_scope_idx]->FindVar("input");
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(in_var);
|
|
|
|
auto in_lod_tensor = in_var->GetMutable<f::LoDTensor>();
|
|
|
|
in_lod_tensor->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
|
|
|
|
in_lod_tensor->set_lod(lod);
|
|
|
|
|
|
|
|
paddle::framework::TensorFromVector<float>(
|
|
|
|
send_vector, *(ctxs_[input_scope_idx]), in_lod_tensor);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto out_var = param_scopes_[output_scope_idx]->FindVar("out");
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(out_var);
|
|
|
|
auto out_lodtensor = out_var->GetMutable<f::LoDTensor>();
|
|
|
|
|
|
|
|
auto in_var = param_scopes_[output_scope_idx]->FindVar("input");
|
|
|
|
auto in_lodtensor = in_var->Get<f::LoDTensor>();
|
|
|
|
|
|
|
|
out_lodtensor->ShareDataWith(in_lodtensor);
|
|
|
|
|
|
|
|
op_handle_->Run(false);
|
|
|
|
|
|
|
|
WaitAll();
|
|
|
|
|
|
|
|
p::CPUPlace cpu_place;
|
|
|
|
|
|
|
|
auto &rt = out_var->Get<f::LoDTensor>();
|
|
|
|
|
|
|
|
f::Tensor result_tensor;
|
|
|
|
f::TensorCopySync(rt, cpu_place, &result_tensor);
|
|
|
|
float *ct = result_tensor.data<float>();
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) {
|
|
|
|
ASSERT_NEAR(ct[j], send_vector[j] * gpu_list_.size(), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(ReduceTester, TestCPUReduceTestSelectedRows) {
|
|
|
|
TestReduceOpHandle test_op;
|
|
|
|
size_t out_scope_idx = 0;
|
|
|
|
test_op.InitCtxOnGpu(false);
|
|
|
|
test_op.InitReduceOp(out_scope_idx);
|
|
|
|
test_op.TestReduceSelectedRows(out_scope_idx);
|
|
|
|
}
|
|
|
|
TEST(ReduceTester, TestCPUReduceTestLodTensor) {
|
|
|
|
TestReduceOpHandle test_op;
|
|
|
|
size_t out_scope_idx = 0;
|
|
|
|
test_op.InitCtxOnGpu(false);
|
|
|
|
test_op.InitReduceOp(out_scope_idx);
|
|
|
|
test_op.TestReduceLodTensors(out_scope_idx);
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
|
|
|
|
TEST(ReduceTester, TestGPUReduceTestSelectedRows) {
|
|
|
|
TestReduceOpHandle test_op;
|
|
|
|
size_t out_scope_idx = 0;
|
|
|
|
test_op.InitCtxOnGpu(true);
|
|
|
|
test_op.InitReduceOp(out_scope_idx);
|
|
|
|
test_op.TestReduceSelectedRows(out_scope_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ReduceTester, TestGPUReduceTestLodTensor) {
|
|
|
|
TestReduceOpHandle test_op;
|
|
|
|
size_t out_scope_idx = 0;
|
|
|
|
test_op.InitCtxOnGpu(true);
|
|
|
|
test_op.InitReduceOp(out_scope_idx);
|
|
|
|
test_op.TestReduceLodTensors(out_scope_idx);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} // namespace details
|
|
|
|
} // namespace framework
|
|
|
|
} // namespace paddle
|