|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
import time
|
|
|
|
import math
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
from paddle.fluid import core
|
|
|
|
import unittest
|
|
|
|
from multiprocessing import Process
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import signal
|
|
|
|
|
|
|
|
# Fix seed for test
|
|
|
|
fluid.default_startup_program().random_seed = 1
|
|
|
|
fluid.default_main_program().random_seed = 1
|
|
|
|
|
|
|
|
train_parameters = {
|
|
|
|
"input_size": [3, 224, 224],
|
|
|
|
"input_mean": [0.485, 0.456, 0.406],
|
|
|
|
"input_std": [0.229, 0.224, 0.225],
|
|
|
|
"learning_strategy": {
|
|
|
|
"name": "piecewise_decay",
|
|
|
|
"epochs": [30, 60, 90],
|
|
|
|
"steps": [0.1, 0.01, 0.001, 0.0001]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class SE_ResNeXt():
|
|
|
|
def __init__(self, layers=50):
|
|
|
|
self.params = train_parameters
|
|
|
|
self.layers = layers
|
|
|
|
|
|
|
|
def net(self, input, class_dim=1000):
|
|
|
|
layers = self.layers
|
|
|
|
supported_layers = [50, 101, 152]
|
|
|
|
assert layers in supported_layers, \
|
|
|
|
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
|
|
|
if layers == 50:
|
|
|
|
cardinality = 32
|
|
|
|
reduction_ratio = 16
|
|
|
|
depth = [3, 4, 6, 3]
|
|
|
|
num_filters = [128, 256, 512, 1024]
|
|
|
|
|
|
|
|
conv = self.conv_bn_layer(
|
|
|
|
input=input,
|
|
|
|
num_filters=64,
|
|
|
|
filter_size=7,
|
|
|
|
stride=2,
|
|
|
|
act='relu')
|
|
|
|
conv = fluid.layers.pool2d(
|
|
|
|
input=conv,
|
|
|
|
pool_size=3,
|
|
|
|
pool_stride=2,
|
|
|
|
pool_padding=1,
|
|
|
|
pool_type='max')
|
|
|
|
elif layers == 101:
|
|
|
|
cardinality = 32
|
|
|
|
reduction_ratio = 16
|
|
|
|
depth = [3, 4, 23, 3]
|
|
|
|
num_filters = [128, 256, 512, 1024]
|
|
|
|
|
|
|
|
conv = self.conv_bn_layer(
|
|
|
|
input=input,
|
|
|
|
num_filters=64,
|
|
|
|
filter_size=7,
|
|
|
|
stride=2,
|
|
|
|
act='relu')
|
|
|
|
conv = fluid.layers.pool2d(
|
|
|
|
input=conv,
|
|
|
|
pool_size=3,
|
|
|
|
pool_stride=2,
|
|
|
|
pool_padding=1,
|
|
|
|
pool_type='max')
|
|
|
|
elif layers == 152:
|
|
|
|
cardinality = 64
|
|
|
|
reduction_ratio = 16
|
|
|
|
depth = [3, 8, 36, 3]
|
|
|
|
num_filters = [128, 256, 512, 1024]
|
|
|
|
|
|
|
|
conv = self.conv_bn_layer(
|
|
|
|
input=input,
|
|
|
|
num_filters=64,
|
|
|
|
filter_size=3,
|
|
|
|
stride=2,
|
|
|
|
act='relu')
|
|
|
|
conv = self.conv_bn_layer(
|
|
|
|
input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
|
|
|
|
conv = self.conv_bn_layer(
|
|
|
|
input=conv,
|
|
|
|
num_filters=128,
|
|
|
|
filter_size=3,
|
|
|
|
stride=1,
|
|
|
|
act='relu')
|
|
|
|
conv = fluid.layers.pool2d(
|
|
|
|
input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
|
|
|
|
pool_type='max')
|
|
|
|
|
|
|
|
for block in range(len(depth)):
|
|
|
|
for i in range(depth[block]):
|
|
|
|
conv = self.bottleneck_block(
|
|
|
|
input=conv,
|
|
|
|
num_filters=num_filters[block],
|
|
|
|
stride=2 if i == 0 and block != 0 else 1,
|
|
|
|
cardinality=cardinality,
|
|
|
|
reduction_ratio=reduction_ratio)
|
|
|
|
|
|
|
|
pool = fluid.layers.pool2d(
|
|
|
|
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
|
|
|
|
drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
|
|
|
|
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
|
|
|
|
out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
|
|
|
|
return out
|
|
|
|
|
|
|
|
def shortcut(self, input, ch_out, stride):
|
|
|
|
ch_in = input.shape[1]
|
|
|
|
if ch_in != ch_out or stride != 1:
|
|
|
|
filter_size = 1
|
|
|
|
return self.conv_bn_layer(input, ch_out, filter_size, stride)
|
|
|
|
else:
|
|
|
|
return input
|
|
|
|
|
|
|
|
def bottleneck_block(self, input, num_filters, stride, cardinality,
|
|
|
|
reduction_ratio):
|
|
|
|
conv0 = self.conv_bn_layer(
|
|
|
|
input=input, num_filters=num_filters, filter_size=1, act='relu')
|
|
|
|
conv1 = self.conv_bn_layer(
|
|
|
|
input=conv0,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=3,
|
|
|
|
stride=stride,
|
|
|
|
groups=cardinality,
|
|
|
|
act='relu')
|
|
|
|
conv2 = self.conv_bn_layer(
|
|
|
|
input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
|
|
|
|
scale = self.squeeze_excitation(
|
|
|
|
input=conv2,
|
|
|
|
num_channels=num_filters * 2,
|
|
|
|
reduction_ratio=reduction_ratio)
|
|
|
|
|
|
|
|
short = self.shortcut(input, num_filters * 2, stride)
|
|
|
|
|
|
|
|
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
|
|
|
|
|
|
|
def conv_bn_layer(self,
|
|
|
|
input,
|
|
|
|
num_filters,
|
|
|
|
filter_size,
|
|
|
|
stride=1,
|
|
|
|
groups=1,
|
|
|
|
act=None):
|
|
|
|
conv = fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=(filter_size - 1) / 2,
|
|
|
|
groups=groups,
|
|
|
|
act=None,
|
|
|
|
bias_attr=False)
|
|
|
|
return fluid.layers.batch_norm(input=conv, act=act)
|
|
|
|
|
|
|
|
def squeeze_excitation(self, input, num_channels, reduction_ratio):
|
|
|
|
pool = fluid.layers.pool2d(
|
|
|
|
input=input, pool_size=0, pool_type='avg', global_pooling=True)
|
|
|
|
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
|
|
|
|
squeeze = fluid.layers.fc(input=pool,
|
|
|
|
size=num_channels / reduction_ratio,
|
|
|
|
act='relu')
|
|
|
|
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
|
|
|
|
excitation = fluid.layers.fc(input=squeeze,
|
|
|
|
size=num_channels,
|
|
|
|
act='sigmoid')
|
|
|
|
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
|
|
|
|
return scale
|
|
|
|
|
|
|
|
|
|
|
|
def get_model(batch_size):
|
|
|
|
# Input data
|
|
|
|
image = fluid.layers.fill_constant(
|
|
|
|
shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0)
|
|
|
|
label = fluid.layers.fill_constant(
|
|
|
|
shape=[batch_size, 1], dtype='int64', value=0.0)
|
|
|
|
|
|
|
|
# Train program
|
|
|
|
model = SE_ResNeXt(layers=50)
|
|
|
|
out = model.net(input=image, class_dim=102)
|
|
|
|
cost = fluid.layers.cross_entropy(input=out, label=label)
|
|
|
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
|
|
|
|
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
|
|
|
|
|
|
|
|
# Evaluator
|
|
|
|
test_program = fluid.default_main_program().clone(for_test=True)
|
|
|
|
|
|
|
|
# Optimization
|
|
|
|
total_images = 6149 # flowers
|
|
|
|
epochs = [30, 60, 90]
|
|
|
|
step = int(total_images / batch_size + 1)
|
|
|
|
|
|
|
|
bd = [step * e for e in epochs]
|
|
|
|
base_lr = 0.1
|
|
|
|
lr = []
|
|
|
|
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
|
|
|
|
|
|
|
|
optimizer = fluid.optimizer.Momentum(
|
|
|
|
learning_rate=fluid.layers.piecewise_decay(
|
|
|
|
boundaries=bd, values=lr),
|
|
|
|
momentum=0.9,
|
|
|
|
regularization=fluid.regularizer.L2Decay(1e-4))
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
|
|
|
|
# Reader
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
paddle.dataset.flowers.train(), batch_size=batch_size)
|
|
|
|
test_reader = paddle.batch(
|
|
|
|
paddle.dataset.flowers.test(), batch_size=batch_size)
|
|
|
|
|
|
|
|
return test_program, avg_cost, train_reader, test_reader, acc_top1, out
|
|
|
|
|
|
|
|
|
|
|
|
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
|
|
|
|
t = fluid.DistributeTranspiler()
|
|
|
|
t.transpile(
|
|
|
|
trainer_id=trainer_id,
|
|
|
|
program=main_program,
|
|
|
|
pservers=pserver_endpoints,
|
|
|
|
trainers=trainers)
|
|
|
|
return t
|
|
|
|
|
|
|
|
|
|
|
|
class DistSeResneXt2x2:
|
|
|
|
def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
|
|
|
|
trainer_id):
|
|
|
|
get_model(batch_size=2)
|
|
|
|
t = get_transpiler(trainer_id,
|
|
|
|
fluid.default_main_program(), pserver_endpoints,
|
|
|
|
trainers)
|
|
|
|
pserver_prog = t.get_pserver_program(current_endpoint)
|
|
|
|
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
|
|
|
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(startup_prog)
|
|
|
|
exe.run(pserver_prog)
|
|
|
|
|
|
|
|
def _wait_ps_ready(self, pid):
|
|
|
|
retry_times = 20
|
|
|
|
while True:
|
|
|
|
assert retry_times >= 0, "wait ps ready failed"
|
|
|
|
time.sleep(3)
|
|
|
|
print("waiting ps ready: ", pid)
|
|
|
|
try:
|
|
|
|
# the listen_and_serv_op would touch a file which contains the listen port
|
|
|
|
# on the /tmp directory until it was ready to process all the RPC call.
|
|
|
|
os.stat("/tmp/paddle.%d.port" % pid)
|
|
|
|
return
|
|
|
|
except os.error:
|
|
|
|
retry_times -= 1
|
|
|
|
|
|
|
|
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
|
|
|
|
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
|
|
|
|
batch_size=2)
|
|
|
|
if is_dist:
|
|
|
|
t = get_transpiler(trainer_id,
|
|
|
|
fluid.default_main_program(), endpoints,
|
|
|
|
trainers)
|
|
|
|
trainer_prog = t.get_trainer_program()
|
|
|
|
else:
|
|
|
|
trainer_prog = fluid.default_main_program()
|
|
|
|
|
|
|
|
startup_exe = fluid.Executor(place)
|
|
|
|
startup_exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
strategy = fluid.ExecutionStrategy()
|
|
|
|
strategy.num_threads = 1
|
|
|
|
strategy.allow_op_delay = False
|
|
|
|
exe = fluid.ParallelExecutor(
|
|
|
|
True, loss_name=avg_cost.name, exec_strategy=strategy)
|
|
|
|
|
|
|
|
feed_var_list = [
|
|
|
|
var for var in trainer_prog.global_block().vars.itervalues()
|
|
|
|
if var.is_data
|
|
|
|
]
|
|
|
|
|
|
|
|
feeder = fluid.DataFeeder(feed_var_list, place)
|
|
|
|
reader_generator = train_reader()
|
|
|
|
first_loss, = exe.run(fetch_list=[avg_cost.name])
|
|
|
|
print(first_loss)
|
|
|
|
for i in xrange(5):
|
|
|
|
loss, = exe.run(fetch_list=[avg_cost.name])
|
|
|
|
last_loss, = exe.run(fetch_list=[avg_cost.name])
|
|
|
|
print(last_loss)
|
|
|
|
|
|
|
|
|
|
|
|
def main(role="pserver",
|
|
|
|
endpoints="127.0.0.1:9123",
|
|
|
|
trainer_id=0,
|
|
|
|
current_endpoint="127.0.0.1:9123",
|
|
|
|
trainers=1,
|
|
|
|
is_dist=True):
|
|
|
|
model = DistSeResneXt2x2()
|
|
|
|
if role == "pserver":
|
|
|
|
model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
|
|
|
|
else:
|
|
|
|
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
|
|
) else fluid.CPUPlace()
|
|
|
|
model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if len(sys.argv) != 7:
|
|
|
|
print(
|
|
|
|
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
|
|
|
|
)
|
|
|
|
role = sys.argv[1]
|
|
|
|
endpoints = sys.argv[2]
|
|
|
|
trainer_id = int(sys.argv[3])
|
|
|
|
current_endpoint = sys.argv[4]
|
|
|
|
trainers = int(sys.argv[5])
|
|
|
|
is_dist = True if sys.argv[6] == "TRUE" else False
|
|
|
|
main(
|
|
|
|
role=role,
|
|
|
|
endpoints=endpoints,
|
|
|
|
trainer_id=trainer_id,
|
|
|
|
current_endpoint=current_endpoint,
|
|
|
|
trainers=trainers,
|
|
|
|
is_dist=is_dist)
|