You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
117 lines
4.0 KiB
117 lines
4.0 KiB
8 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/framework/op_registry.h"
|
||
|
#include "paddle/operators/functor/math_functor.h"
|
||
|
#include "paddle/platform/assert.h"
|
||
|
#include "paddle/platform/cuda_helper.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
template <typename T, int blockDimX, int blockDimY, int gridDimX>
|
||
|
__global__ void LookupTable(T* output, const T* table, const uint32_t* ids,
|
||
|
const int N, const int K, const int D) {
|
||
|
int idx = threadIdx.x;
|
||
|
int idy = blockIdx.x + threadIdx.y * gridDimX;
|
||
|
|
||
|
while (idy < K) {
|
||
|
int id = ids[idy];
|
||
|
PADDLE_ASSERT(id >= 0);
|
||
|
PADDLE_ASSERT(id < N);
|
||
|
T* out = output + idy;
|
||
|
const T* tab = table + id;
|
||
|
for (int i = idx; i < D; i += blockDimX) {
|
||
|
out[i] = tab[i];
|
||
|
}
|
||
|
idy += blockDimY * gridDimX;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T, int blockDimX, int blockDimY, int gridDimX>
|
||
|
__global__ void LookupTableGradKernel(T* table, const T* output,
|
||
|
const uint32_t* ids, const int N,
|
||
|
const int K, const int D) {
|
||
|
int idx = threadIdx.x;
|
||
|
int idy = blockIdx.x + threadIdx.y * gridDimX;
|
||
|
|
||
|
while (idy < K) {
|
||
|
int id = ids[idy];
|
||
|
PADDLE_ASSERT(id >= 0);
|
||
|
PADDLE_ASSERT(id < N);
|
||
|
const T* out = output + idy;
|
||
|
T* tab = table + id;
|
||
|
for (int i = idx; i < D; i += blockDimX) {
|
||
|
paddle::platform::CudaAtomicAdd(tab + i, out[i]);
|
||
|
}
|
||
|
idy += blockDimY * gridDimX;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
class LookupTableCUDAKernel : public framework::OpKernel {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
auto table_t = context.Input<Tensor>("W");
|
||
|
auto ids_t = context.Input<Tensor>("Ids");
|
||
|
auto output_t = context.Output<Tensor>("Out");
|
||
|
|
||
|
size_t N = table_t->dims()[0];
|
||
|
size_t D = table_t->dims()[1];
|
||
|
size_t K = product(ids_t->dims());
|
||
|
auto ids = ids_t->data<uint32_t>();
|
||
|
auto table = table_t->data<T>();
|
||
|
auto output = output_t->mutable_data<T>(context.GetPlace());
|
||
|
|
||
|
dim3 threads(128, 8);
|
||
|
dim3 grids(8, 1);
|
||
|
LookupTable<T, 128, 8, 8><<<grids, threads>>>(output, table, ids, N, K, D);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class LookupTableGrad : public framework::OpKernel {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
auto ids_t = context.Input<Tensor>("Ids");
|
||
|
auto d_output_t = context.Input<Tensor>(framework::GradVarName("Out"));
|
||
|
auto d_table_t = context.Output<Tensor>(framework::GradVarName("W"));
|
||
|
|
||
|
int N = d_table_t->dims()[0];
|
||
|
int D = d_table_t->dims()[1];
|
||
|
int K = product(ids_t->dims());
|
||
|
const uint32_t* ids = ids_t->data<uint32_t>();
|
||
|
T* d_table = d_table_t->mutable_data<T>(context.GetPlace());
|
||
|
const T* d_output = d_output_t->data<T>();
|
||
|
|
||
|
auto* device_context =
|
||
|
const_cast<platform::DeviceContext*>(context.device_context_);
|
||
|
functor::Set<paddle::platform::GPUPlace, T>()(static_cast<T>(0), d_table_t,
|
||
|
device_context);
|
||
|
dim3 threads(128, 8);
|
||
|
dim3 grids(8, 1);
|
||
|
LookupTableGradKernel<T, 128, 8, 8><<<grids, threads>>>(d_table, d_output,
|
||
|
ids, N, K, D);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OP_GPU_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>);
|
||
|
REGISTER_OP_GPU_KERNEL(lookup_table_grad, ops::LookupTableGrad<float>);
|