You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/benchmark/paddle/rnn/rnn.py

43 lines
1.2 KiB

#!/usr/bin/env python
from paddle.trainer_config_helpers import *
import imdb
num_class = 2
vocab_size = 30000
fixedlen = 100
batch_size = get_config_arg('batch_size', int, 128)
lstm_num = get_config_arg('lstm_num', int, 1)
hidden_size = get_config_arg('hidden_size', int, 128)
# whether to pad sequence into fixed length
pad_seq = get_config_arg('pad_seq', bool, True)
imdb.create_data('imdb.pkl')
args={'vocab_size':vocab_size, 'pad_seq':pad_seq, 'maxlen':fixedlen}
define_py_data_sources2("train.list",
None,
module="provider",
obj="process",
args=args)
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25
)
net = data_layer('data', size=vocab_size)
net = embedding_layer(input=net, size=128)
for i in xrange(lstm_num):
net = simple_lstm(input=net, size=hidden_size)
net = last_seq(input=net)
net = fc_layer(input=net, size=2, act=SoftmaxActivation())
lab = data_layer('label', num_class)
loss = classification_cost(input=net, label=lab)
outputs(loss)