You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/elementwise_op_function.h

341 lines
11 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
7 years ago
#include "paddle/platform/transform.h"
7 years ago
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
/*
* Out = X Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
*/
inline void get_mid_dims(const framework::DDim& x_dims,
const framework::DDim& y_dims, const int axis,
int& pre, int& n, int& post) {
pre = 1;
n = 1;
post = 1;
for (int i = 0; i < axis; ++i) {
pre *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
"Broadcast dimension mismatch.");
n *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
post *= x_dims[i];
}
}
7 years ago
template <typename T, typename Place>
struct RowwiseTransformIterator;
template <typename T, typename Place>
struct MidWiseTransformIterator;
template <typename T>
struct RowwiseTransformIterator<T, platform::CPUPlace> {
RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
RowwiseTransformIterator<T, platform::CPUPlace>& operator++() {
++i_;
7 years ago
i_ %= n_;
7 years ago
return *this;
}
bool operator==(
const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
7 years ago
return (ptr_ + i_) == &(*rhs);
7 years ago
}
bool operator!=(
const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
7 years ago
return (ptr_ + i_) != &(*rhs);
7 years ago
}
const T& operator*() { return ptr_[i_]; }
const T* ptr_;
int i_;
7 years ago
int64_t n_;
7 years ago
};
template <typename T>
struct MidWiseTransformIterator<T, platform::CPUPlace> {
MidWiseTransformIterator(const T* ptr, int n, int post)
: ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}
MidWiseTransformIterator<T, platform::CPUPlace>& operator++() {
7 years ago
i_ = (++j_ / post_) % n_;
7 years ago
return *this;
}
bool operator==(
const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
7 years ago
return (ptr_ + i_) == &(*rhs);
7 years ago
}
bool operator!=(
const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
7 years ago
return (ptr_ + i_) != &(*rhs);
7 years ago
}
const T& operator*() { return ptr_[i_]; }
const T* ptr_;
int i_;
7 years ago
int64_t j_;
int64_t n_;
7 years ago
int post_;
};
7 years ago
#ifdef __NVCC__
template <typename T>
struct RowwiseTransformIterator<T, platform::GPUPlace>
: public thrust::iterator_adaptor<
RowwiseTransformIterator<T, platform::GPUPlace>, const T*> {
public:
typedef thrust::iterator_adaptor<
RowwiseTransformIterator<T, platform::GPUPlace>, const T*>
super_t;
7 years ago
HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
7 years ago
: super_t(x), begin_(x), n_(n){};
friend class thrust::iterator_core_access;
private:
unsigned int n_;
const T* begin_;
7 years ago
HOSTDEVICE typename super_t::reference dereference() const {
7 years ago
return *(begin_ + (this->base() - begin_) % n_);
}
};
template <typename T>
struct MidWiseTransformIterator<T, platform::GPUPlace>
: public thrust::iterator_adaptor<
MidWiseTransformIterator<T, platform::GPUPlace>, const T*> {
public:
typedef thrust::iterator_adaptor<
MidWiseTransformIterator<T, platform::GPUPlace>, const T*>
super_t;
7 years ago
HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
7 years ago
: super_t(x), begin_(x), n_(n), post_(post){};
friend class thrust::iterator_core_access;
private:
unsigned int post_;
unsigned int n_;
const T* begin_;
7 years ago
HOSTDEVICE typename super_t::reference dereference() const {
7 years ago
return *(begin_ + (((this->base() - begin_) / post_) % n_));
}
};
#endif
7 years ago
template <typename Functor, typename T, typename Place>
struct TransformFunctor {
TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
7 years ago
framework::Tensor* z, const platform::DeviceContext& ctx,
7 years ago
Functor func)
: x_(x->data<T>()),
y_(y->data<T>()),
z_(z->mutable_data<T>(ctx.GetPlace())),
nx_(x->numel()),
ctx_(ctx),
func_(func) {}
inline void Run() const {
platform::Transform<Place> trans;
7 years ago
trans(ctx_, x_, x_ + nx_, y_, z_, func_);
7 years ago
}
inline void RunRowWise(int n, int pre) const {
platform::Transform<Place> trans;
7 years ago
trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, Place>(y_, n), z_,
func_);
7 years ago
}
inline void RunMidWise(int n, int pre, int post) const {
platform::Transform<Place> trans;
7 years ago
trans(ctx_, x_, x_ + nx_, MidWiseTransformIterator<T, Place>(y_, n, post),
z_, func_);
7 years ago
}
const T* x_;
const T* y_;
T* z_;
int64_t nx_;
7 years ago
const platform::DeviceContext& ctx_;
7 years ago
Functor func_;
};
#define EIGEN_FUNCTOR(name, eigen_op) \
struct Eigen##name##Functor { \
template <typename Place, typename T> \
inline void Run(const framework::Tensor* x, const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e); \
} \
template <typename Place, typename T> \
inline void RunBroadCast(const framework::Tensor* x, \
const framework::Tensor* y, framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n)) \
.broadcast(Eigen::DSizes<int, 2>(pre, 1)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
template <typename Place, typename T> \
inline void RunBroadCast2(const framework::Tensor* x, \
const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n, int post) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1)) \
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
}
template <class functor, typename Place, typename T>
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.");
if (x_dims == y_dims) {
functor f;
f.template Run<Place, T>(x, y, z, ctx);
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
functor f;
f.template RunBroadCast<Place, T>(x, y, z, ctx, pre, n);
return;
} else {
functor f;
f.template RunBroadCast2<Place, T>(x, y, z, ctx, pre, n, post);
return;
}
}
#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);
#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);
#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);
#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);
template <typename Place, typename T, typename functor, typename functor1,
typename broadcastfunctor, typename broadcast2functor>
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Input<Tensor>("Out");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto place = ctx.GetEigenDevice<Place>();
auto x_dims = x->dims();
auto y_dims = y->dims();
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
}
if (x_dims == y_dims) {
functor f;
f(place, x, y, out, dx, dy, dout);
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
broadcastfunctor f;
f(place, x, y, out, dx, dy, dout, pre, n);
return;
} else {
broadcast2functor f;
f(place, x, y, out, dx, dy, dout, pre, n, post);
return;
}
}
} // namespace operators
} // namespace paddle