You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.9 KiB
136 lines
4.9 KiB
6 years ago
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#pragma once
|
||
|
#include <functional>
|
||
|
#include <numeric>
|
||
|
#include <string>
|
||
|
#include <unordered_map>
|
||
|
#include "glog/logging.h"
|
||
|
#include "paddle/fluid/framework/block_desc.h"
|
||
|
#include "paddle/fluid/framework/op_desc.h"
|
||
|
#include "paddle/fluid/framework/type_defs.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace framework {
|
||
|
|
||
|
/*
|
||
|
Inplace Inference for create In->Out pairs for inplaced operator.
|
||
|
If we specify a pair of corresponding names. For example, X->Out.
|
||
|
then Out will inplaced use X's memory. The base class will do
|
||
|
legality validation for both variables.
|
||
|
*/
|
||
|
class InplaceOpInference {
|
||
|
public:
|
||
|
virtual ~InplaceOpInference() {}
|
||
|
virtual std::unordered_map<std::string, std::string> operator()(
|
||
|
const OpDesc& op_desc, BlockDesc* block) const = 0;
|
||
|
};
|
||
|
|
||
|
class InplaceInToOut : public InplaceOpInference {
|
||
|
public:
|
||
|
std::unordered_map<std::string, std::string> operator()(
|
||
|
const OpDesc& op_desc, BlockDesc* block) const {
|
||
|
std::unordered_map<std::string, std::string> ret;
|
||
|
auto in_out_var_names_pair = this->Apply(op_desc, block);
|
||
|
for (auto& pair : in_out_var_names_pair) {
|
||
|
PADDLE_ENFORCE(!op_desc.Input(pair.first).empty(),
|
||
|
string::Sprintf("op %s do not have input of %s!",
|
||
|
op_desc.Type(), pair.first));
|
||
|
PADDLE_ENFORCE(!op_desc.Output(pair.second).empty(),
|
||
|
string::Sprintf("op %s do not have output of %s!",
|
||
|
op_desc.Type(), pair.second));
|
||
|
auto& in_name = op_desc.Input(pair.first).at(0);
|
||
|
auto& out_name = op_desc.Output(pair.second).at(0);
|
||
|
|
||
|
auto in = block->FindRecursiveOrCreateVar(in_name);
|
||
|
auto out = block->FindRecursiveOrCreateVar(out_name);
|
||
|
if (TryInplaceInputOutput(in, out)) ret.insert({in_name, out_name});
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
virtual std::unordered_map<std::string, std::string> Apply(
|
||
|
const OpDesc& op_desc, BlockDesc* block) const = 0;
|
||
|
|
||
|
bool TryInplaceInputOutput(const VarDesc& in, const VarDesc& out) const {
|
||
|
auto var_can_reused = [&](const VarDesc& node) -> bool {
|
||
|
auto type = node.GetType();
|
||
|
if (node.Persistable() || type != proto::VarType::LOD_TENSOR ||
|
||
|
node.GetShape().empty()) {
|
||
|
return false;
|
||
|
}
|
||
|
// vars can be @EMPTY@, @LR_DECAY_REUSE_ID@. For example, while_grad
|
||
|
std::string name = node.Name();
|
||
|
if (!name.empty() && name[0] == '@' && name[name.size() - 1] == '@')
|
||
|
return false;
|
||
|
return true;
|
||
|
};
|
||
|
|
||
|
auto var_size_in_bytes = [&](const VarDesc& node) -> size_t {
|
||
|
auto shape = node.GetShape();
|
||
|
int size = std::accumulate(shape.begin(), shape.end(), 1,
|
||
|
std::multiplies<int>());
|
||
|
size_t type_size = SizeOfType(node.GetDataType());
|
||
|
return type_size * std::abs(size);
|
||
|
};
|
||
|
|
||
|
return in.Name() != out.Name() && var_can_reused(in) &&
|
||
|
var_can_reused(out) &&
|
||
|
var_size_in_bytes(out) <= var_size_in_bytes(in);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
Inplace In and Out for operator only have an Input and an Output.
|
||
|
For example, activation op.
|
||
|
*/
|
||
|
class SingleOpInplaceInToOut : public InplaceInToOut {
|
||
|
protected:
|
||
|
std::unordered_map<std::string, std::string> Apply(
|
||
|
const OpDesc& op_desc, BlockDesc* block) const override {
|
||
|
PADDLE_ENFORCE(!op_desc.InputNames().empty(),
|
||
|
"Op inputs must not be empty");
|
||
|
PADDLE_ENFORCE(!op_desc.OutputNames().empty(),
|
||
|
"Op outputs must not be empty");
|
||
|
auto x_name = op_desc.InputNames().at(0);
|
||
|
auto out_name = op_desc.OutputNames().at(0);
|
||
|
return std::unordered_map<std::string, std::string>{{x_name, out_name}};
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
Gradient op. Inplace output use it's Input.
|
||
|
For example, Input@Grad->Input reuse strategy.
|
||
|
*/
|
||
|
class GradOpInplaceInToOut : public InplaceInToOut {
|
||
|
protected:
|
||
|
std::unordered_map<std::string, std::string> Apply(
|
||
|
const OpDesc& op_desc, BlockDesc* block) const override {
|
||
|
std::unordered_map<std::string, std::string> ret;
|
||
|
std::unordered_set<std::string> output_names(op_desc.OutputNames().begin(),
|
||
|
op_desc.OutputNames().end());
|
||
|
for (auto& input_name : op_desc.InputNames()) {
|
||
|
if (output_names.count(GradVarName(input_name))) {
|
||
|
ret.insert({input_name, GradVarName(input_name)});
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace framework
|
||
|
} // namespace paddle
|