You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.5 KiB
161 lines
5.5 KiB
8 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "LayerGradUtil.h"
|
||
|
#include "TestUtil.h"
|
||
|
|
||
|
using namespace paddle; // NOLINT
|
||
|
using namespace std; // NOLINT
|
||
|
|
||
|
P_DECLARE_bool(use_gpu);
|
||
|
P_DECLARE_int32(gpu_id);
|
||
|
P_DECLARE_bool(thread_local_rand_use_global_seed);
|
||
|
|
||
|
// Do one forward pass of priorBox layer and check to see if its output
|
||
|
// matches the given result
|
||
|
void doOnePriorBoxTest(size_t featureMapWidth,
|
||
|
size_t featureMapHeight,
|
||
|
size_t imageWidth,
|
||
|
size_t imageHeight,
|
||
|
vector<int> minSize,
|
||
|
vector<int> maxSize,
|
||
|
vector<float> aspectRatio,
|
||
|
vector<float> variance,
|
||
|
MatrixPtr& result) {
|
||
|
// Setting up the priorbox layer
|
||
|
TestConfig configt;
|
||
|
configt.layerConfig.set_type("priorbox");
|
||
|
|
||
|
configt.inputDefs.push_back({INPUT_DATA, "featureMap", 1, 0});
|
||
|
LayerInputConfig* input = configt.layerConfig.add_inputs();
|
||
|
configt.inputDefs.push_back({INPUT_DATA, "image", 1, 0});
|
||
|
configt.layerConfig.add_inputs();
|
||
|
PriorBoxConfig* pb = input->mutable_priorbox_conf();
|
||
|
for (size_t i = 0; i < minSize.size(); i++) pb->add_min_size(minSize[i]);
|
||
|
for (size_t i = 0; i < maxSize.size(); i++) pb->add_max_size(maxSize[i]);
|
||
|
for (size_t i = 0; i < aspectRatio.size(); i++)
|
||
|
pb->add_aspect_ratio(aspectRatio[i]);
|
||
|
for (size_t i = 0; i < variance.size(); i++) pb->add_variance(variance[i]);
|
||
|
|
||
|
// data layer initialize
|
||
|
std::vector<DataLayerPtr> dataLayers;
|
||
|
LayerMap layerMap;
|
||
|
vector<Argument> datas;
|
||
|
initDataLayer(
|
||
|
configt, &dataLayers, &datas, &layerMap, "priorbox", 1, false, true);
|
||
|
dataLayers[0]->getOutput().setFrameHeight(featureMapHeight);
|
||
|
dataLayers[0]->getOutput().setFrameWidth(featureMapWidth);
|
||
|
dataLayers[1]->getOutput().setFrameHeight(imageHeight);
|
||
|
dataLayers[1]->getOutput().setFrameWidth(imageWidth);
|
||
|
|
||
|
// test layer initialize
|
||
|
std::vector<ParameterPtr> parameters;
|
||
|
LayerPtr priorboxLayer;
|
||
|
initTestLayer(configt, &layerMap, ¶meters, &priorboxLayer);
|
||
|
|
||
|
priorboxLayer->forward(PASS_GC);
|
||
|
checkMatrixEqual(priorboxLayer->getOutputValue(), result);
|
||
|
}
|
||
|
|
||
|
TEST(Layer, priorBoxLayerFwd) {
|
||
|
vector<int> minSize;
|
||
|
vector<int> maxSize;
|
||
|
vector<float> aspectRatio;
|
||
|
vector<float> variance;
|
||
|
|
||
|
minSize.push_back(276);
|
||
|
maxSize.push_back(330);
|
||
|
variance.push_back(0.1);
|
||
|
variance.push_back(0.1);
|
||
|
variance.push_back(0.2);
|
||
|
variance.push_back(0.2);
|
||
|
|
||
|
MatrixPtr result;
|
||
|
result = Matrix::create(1, 2 * 8, false, false);
|
||
|
|
||
|
float resultData[] = {0.04,
|
||
|
0.04,
|
||
|
0.96,
|
||
|
0.96,
|
||
|
0.1,
|
||
|
0.1,
|
||
|
0.2,
|
||
|
0.2,
|
||
|
0,
|
||
|
0,
|
||
|
1,
|
||
|
1,
|
||
|
0.1,
|
||
|
0.1,
|
||
|
0.2,
|
||
|
0.2};
|
||
|
result->setData(resultData);
|
||
|
doOnePriorBoxTest(/* featureMapWidth */ 1,
|
||
|
/* featureMapHeight */ 1,
|
||
|
/* imageWidth */ 300,
|
||
|
/* imageHeight */ 300,
|
||
|
minSize,
|
||
|
maxSize,
|
||
|
aspectRatio,
|
||
|
variance,
|
||
|
result);
|
||
|
|
||
|
variance[1] = 0.2;
|
||
|
variance[3] = 0.1;
|
||
|
maxSize.pop_back();
|
||
|
Matrix::resizeOrCreate(result, 1, 4 * 8, false, false);
|
||
|
float resultData2[] = {0, 0, 0.595, 0.595, 0.1, 0.2, 0.2, 0.1,
|
||
|
0.405, 0, 1, 0.595, 0.1, 0.2, 0.2, 0.1,
|
||
|
0, 0.405, 0.595, 1, 0.1, 0.2, 0.2, 0.1,
|
||
|
0.405, 0.405, 1, 1, 0.1, 0.2, 0.2, 0.1};
|
||
|
result->setData(resultData2);
|
||
|
doOnePriorBoxTest(/* featureMapWidth */ 2,
|
||
|
/* featureMapHeight */ 2,
|
||
|
/* imageWidth */ 400,
|
||
|
/* imageHeight */ 400,
|
||
|
minSize,
|
||
|
maxSize,
|
||
|
aspectRatio,
|
||
|
variance,
|
||
|
result);
|
||
|
|
||
|
aspectRatio.push_back(2);
|
||
|
Matrix::resizeOrCreate(result, 1, 3 * 8, false, false);
|
||
|
float resultData3[] = {0.04, 0.04, 0.96, 0.96, 0.1, 0.2,
|
||
|
0.2, 0.1, 0, 0.17473088, 1, 0.825269,
|
||
|
0.1, 0.2, 0.2, 0.1, 0.17473088, 0,
|
||
|
0.825269, 1, 0.1, 0.2, 0.2, 0.1};
|
||
|
result->setData(resultData3);
|
||
|
doOnePriorBoxTest(/* featureMapWidth */ 1,
|
||
|
/* featureMapHeight */ 1,
|
||
|
/* imageWidth */ 300,
|
||
|
/* imageHeight */ 300,
|
||
|
minSize,
|
||
|
maxSize,
|
||
|
aspectRatio,
|
||
|
variance,
|
||
|
result);
|
||
|
}
|
||
|
|
||
|
int main(int argc, char** argv) {
|
||
|
testing::InitGoogleTest(&argc, argv);
|
||
|
initMain(argc, argv);
|
||
|
FLAGS_thread_local_rand_use_global_seed = true;
|
||
|
srand(1);
|
||
|
return RUN_ALL_TESTS();
|
||
|
}
|