You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dataset.py

279 lines
7.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
__all__ = ['DatasetFactory']
class DatasetFactory(object):
"""
DatasetFactory is a factory which create dataset by its name,
you can create "QueueDataset" or "InMemoryDataset",
the default is "QueueDataset".
Example:
dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
"""
def __init__(self):
"""
Init
"""
pass
def create_dataset(self, datafeed_class="QueueDataset"):
"""
Create "QueueDataset" or "InMemoryDataset",
the default is "QueueDataset".
"""
try:
dataset = globals()[datafeed_class]()
return dataset
except:
raise ValueError("datafeed class %s does not exist" %
datafeed_class)
class DatasetBase(object):
"""
Base dataset class
"""
def __init__(self):
"""
Init
"""
# define class name here
# to decide whether we need create in memory instance
self.proto_desc = data_feed_pb2.DataFeedDesc()
self.proto_desc.pipe_command = "cat"
self.dataset = core.Dataset("MultiSlotDataset")
self.thread_num = 0
def set_pipe_command(self, pipe_command):
"""
Set pipe command of current dataset
A pipe command is a UNIX pipeline command that can be used only
Example:
>>> dataset.set_pipe_command("python my_script.py")
Args:
pipe_command: pipe command
"""
self.proto_desc.pipe_command = pipe_command
def set_batch_size(self, batch_size):
"""
Set batch size. Will be effective during training
Example:
>>> dataset.set_batch_size(128)
Args:
batch_size: batch size
"""
self.proto_desc.batch_size = batch_size
def set_thread(self, thread_num):
"""
Set thread num, it is the num of readers.
Example:
>>> dataset.set_thread(12)
Args:
thread_num: thread num
"""
self.dataset.set_thread_num(thread_num)
self.thread_num = thread_num
def set_filelist(self, filelist):
"""
Set file list in current worker.
Example:
>>> dataset.set_filelist(['a.txt', 'b.txt'])
Args:
filelist: file list
"""
self.dataset.set_filelist(filelist)
def set_use_var(self, var_list):
"""
Set Variables which you will use.
Example:
>>> dataset.set_use_var([data, label])
Args:
var_list: variable list
"""
multi_slot = self.proto_desc.multi_slot_desc
for var in var_list:
slot_var = multi_slot.slots.add()
slot_var.is_used = True
slot_var.name = var.name
if var.lod_level == 0:
slot_var.is_dense = True
if var.dtype == core.VarDesc.VarType.FP32:
slot_var.type = "float"
elif var.dtype == core.VarDesc.VarType.INT64:
slot_var.type = "uint64"
else:
raise ValueError(
"Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
)
def set_hdfs_config(self, fs_name, fs_ugi):
"""
Set hdfs config: fs name ad ugi
Example:
>>> dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
Args:
fs_name: fs name
fs_ugi: fs ugi
"""
self.dataset.set_hdfs_config(fs_name, fs_ugi)
def _prepare_to_run(self):
"""
Set data_feed_desc before load or shuffle,
user no need to call this function.
"""
self.dataset.set_data_feed_desc(self.desc())
def desc(self):
"""
Returns a protobuf message for this DataFeedDesc
Example:
>>> print(dataset.desc())
Returns:
A string message
"""
return text_format.MessageToString(self.proto_desc)
class InMemoryDataset(DatasetBase):
"""
InMemoryDataset, it will load data into memory
and shuffle data before training
Example:
dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
"""
def __init__(self):
"""
Init
"""
super(InMemoryDataset, self).__init__()
self.proto_desc.name = "MultiSlotInMemoryDataFeed"
def load_into_memory(self):
"""
Load data into memory
Example:
>>> import paddle.fluid as fluid
>>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
>>> filelist = ["a.txt", "b.txt"]
>>> dataset.set_filelist(filelist)
>>> dataset.load_into_memory()
"""
self._prepare_to_run()
self.dataset.load_into_memory()
def local_shuffle(self):
"""
Local shuffle
Example:
>>> import paddle.fluid as fluid
>>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
>>> filelist = ["a.txt", "b.txt"]
>>> dataset.set_filelist(filelist)
>>> dataset.local_shuffle()
"""
self.dataset.local_shuffle()
def global_shuffle(self, fleet=None):
"""
Global shuffle.
If you run distributed, you should pass fleet instead of None.
Example:
>>> import paddle.fluid as fluid
>>> import paddle.fluid.incubate.fleet.parameter_server as fleet
>>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
>>> filelist = ["a.txt", "b.txt"]
>>> dataset.set_filelist(filelist)
>>> dataset.global_shuffle(fleet)
Args:
fleet: fleet singleton. Default None.
"""
trainer_num = 1
if fleet is not None:
fleet.fleet_instance.role_maker_.barrier_worker()
trainer_num = fleet.worker_num()
self.dataset.set_trainer_num(trainer_num)
self.dataset.global_shuffle()
if fleet is not None:
fleet.fleet_instance.role_maker_.barrier_worker()
class QueueDataset(DatasetBase):
"""
QueueDataset, it will process data streamly.
Example:
import paddle.fluid as fluid
dataset = fluid.DatasetFactory.create_dataset("QueueDataset")
"""
def __init__(self):
"""
Init
"""
super(QueueDataset, self).__init__()
self.proto_desc.name = "MultiSlotDataFeed"
def local_shuffle(self):
"""
Local shuffle
QueueDataset does not support local shuffle
"""
raise NotImplementedError(
"QueueDataset does not support local shuffle, "
"please use InMemoryDataset for local_shuffle")
def global_shuffle(self, fleet=None):
"""
Global shuffle
"""
raise NotImplementedError(
"QueueDataset does not support global shuffle, "
"please use InMemoryDataset for global_shuffle")