You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
3.2 KiB
85 lines
3.2 KiB
8 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
#include "paddle/framework/eigen.h"
|
||
|
#include "paddle/framework/op_registry.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||
|
typename IndexType = Eigen::DenseIndex>
|
||
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||
|
typename IndexType = Eigen::DenseIndex>
|
||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||
|
|
||
|
template <typename Place, typename T>
|
||
|
class SquaredL2DistanceKernel : public framework::OpKernel {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
auto* input0 = context.Input<Tensor>("X");
|
||
|
auto* input1 = context.Input<Tensor>("Y");
|
||
|
auto* output0 = context.Output<Tensor>("sub_result");
|
||
|
auto* output1 = context.Output<Tensor>("Out");
|
||
|
|
||
|
output0->mutable_data<T>(context.GetPlace());
|
||
|
output1->mutable_data<T>(context.GetPlace());
|
||
|
|
||
|
auto X = EigenMatrix<T>::From(*input0);
|
||
|
auto Y = EigenMatrix<T>::From(*input1);
|
||
|
auto subResult = EigenMatrix<T>::From(*output0);
|
||
|
auto Z = EigenMatrix<T>::From(*output1);
|
||
|
|
||
|
auto place = context.GetEigenDevice<Place>();
|
||
|
// buffer the substraction result
|
||
|
subResult.device(place) = X - Y;
|
||
|
const auto& inDims = X.dimensions();
|
||
|
const auto& subResMat = subResult.reshape(Eigen::array<int, 2>(
|
||
|
{static_cast<int>(inDims[0]), static_cast<int>(X.size() / inDims[0])}));
|
||
|
Z.device(place) = subResMat.pow(2).sum(Eigen::array<int, 1>({1}));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename Place, typename T>
|
||
|
class SquaredL2DistanceGradKernel : public framework::OpKernel {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
auto* input0 = context.Input<Tensor>("sub_result");
|
||
|
auto* OG = context.Input<Tensor>(framework::GradVarName("Out"));
|
||
|
auto* IG = context.Output<Tensor>(framework::GradVarName("X"));
|
||
|
|
||
|
IG->mutable_data<T>(context.GetPlace());
|
||
|
|
||
|
auto subResult = EigenMatrix<T>::From(*input0);
|
||
|
auto outGrad = EigenMatrix<T>::From(*OG);
|
||
|
auto inGrad = EigenMatrix<T>::From(*IG);
|
||
|
|
||
|
const auto& subResDims = subResult.dimensions();
|
||
|
int firstDim = static_cast<int>(subResDims[0]);
|
||
|
int cols = subResult.size() / firstDim;
|
||
|
const auto subResMat =
|
||
|
subResult.reshape(Eigen::array<int, 2>({firstDim, cols}));
|
||
|
// create a matrix view for input gradient tensor
|
||
|
auto inGradMat = inGrad.reshape(Eigen::array<int, 2>({firstDim, cols}));
|
||
|
inGradMat.device(context.GetEigenDevice<Place>()) =
|
||
|
2 * (outGrad.broadcast(Eigen::array<int, 2>({1, cols}))) * subResMat;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|