You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_concat_op.py

209 lines
7.4 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
class TestConcatOp(OpTest):
def setUp(self):
self.op_type = "concat"
self.dtype = self.get_dtype()
7 years ago
self.init_test_data()
self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
self.attrs = {'axis': self.axis}
if self.axis < 0:
self.actual_axis = self.axis + len(self.x0.shape)
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
else:
self.actual_axis = self.axis
7 years ago
self.outputs = {
'Out': np.concatenate(
(self.x0, self.x1, self.x2), axis=self.actual_axis)
7 years ago
}
def get_dtype(self):
return "float32"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
7 years ago
self.check_grad(['x1'], 'Out')
self.check_grad(['x2'], 'Out')
def init_test_data(self):
self.x0 = np.random.random((2, 1, 4, 5)).astype(self.dtype)
self.x1 = np.random.random((2, 2, 4, 5)).astype(self.dtype)
self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
7 years ago
self.axis = 1
class TestConcatOp2(TestConcatOp):
7 years ago
def init_test_data(self):
self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
7 years ago
self.axis = 1
class TestConcatOp3(TestConcatOp):
def init_test_data(self):
self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
self.axis = 1
def test_check_grad(self):
pass
class TestConcatOp4(TestConcatOp):
def init_test_data(self):
self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
self.axis = 0
def test_check_grad(self):
pass
class TestConcatOp5(TestConcatOp):
def init_test_data(self):
self.x0 = np.random.random((2, 1, 4, 5)).astype(self.dtype)
self.x1 = np.random.random((2, 2, 4, 5)).astype(self.dtype)
self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
self.axis = -3
def create_test_AxisTensor(parent):
class TestConcatAxisTensor(parent):
def setUp(self):
self.op_type = "concat"
self.dtype = self.get_dtype()
self.init_test_data()
self.inputs = {
'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
'AxisTensor': np.array([self.axis]).astype("int32")
}
self.attrs = {}
if self.axis < 0:
self.actual_axis = self.axis + len(self.x0.shape)
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
else:
self.actual_axis = self.axis
self.outputs = {
'Out': np.concatenate(
(self.x0, self.x1, self.x2), axis=self.actual_axis)
}
cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
TestConcatAxisTensor.__name__ = cls_name
globals()[cls_name] = TestConcatAxisTensor
create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
#----------------Concat Fp16----------------
def create_test_fp16(parent):
class TestConcatFp16(parent):
def get_dtype(self):
return np.float16
cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
TestConcatFp16.__name__ = cls_name
globals()[cls_name] = TestConcatFp16
create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
class TestConcatOpError(OpTest):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of concat_op should be list.
x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
fluid.layers.concat(x1)
# The item in input must be Variable.
x2 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
x3 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
self.assertRaises(TypeError, fluid.layers.concat, [x2])
# The input dtype of concat_op must be float16(only support on GPU), float32, float64, int32, int64.
x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
fluid.layers.concat([x6, x7])
# The type of axis in concat_op should be int or Variable.
def test_axis_type():
fluid.layers.concat([x6, x7], 3.2)
self.assertRaises(TypeError, test_axis_type)
class TestConcatAPI(OpTest):
def test_api(self):
x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
fluid.layers.concat([x_1, x_1], 0)
input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
exe = fluid.Executor(place=fluid.CPUPlace())
[res_1, res_2, res_3] = exe.run(
fluid.default_main_program(),
feed={"x_1": input_2,
"x_2": input_2,
"x_3": input_3},
fetch_list=[out_1, out_2, out_3])
assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
if __name__ == '__main__':
unittest.main()