You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/dygraph_to_static/utils.py

418 lines
14 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import ast
import astor
import atexit
import copy
import gast
import imp
import inspect
import os
import six
import tempfile
dygraph_class_to_static_api = {
"CosineDecay": "cosine_decay",
"ExponentialDecay": "exponential_decay",
"InverseTimeDecay": "inverse_time_decay",
"NaturalExpDecay": "natural_exp_decay",
"NoamDecay": "noam_decay",
"PiecewiseDecay": "piecewise_decay",
"PolynomialDecay": "polynomial_decay",
}
def _is_api_in_module_helper(obj, module_prefix):
m = inspect.getmodule(obj)
return m is not None and m.__name__.startswith(module_prefix)
def is_api_in_module(node, module_prefix):
assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
func_str = astor.to_source(gast.gast_to_ast(node.func))
try:
# TODO(liym27):
# Consider a better to import modules like:
# source_file = inspect.getfile(dyfunc)
# import_statements = ImportVisitor(source_file).transform()
# import_str = "".join(import_statements)
import paddle.fluid as fluid
import paddle
from paddle.fluid.dygraph import to_variable
import paddle.fluid.dygraph as dygraph
return eval("_is_api_in_module_helper({}, '{}')".format(func_str,
module_prefix))
except NameError:
return False
def is_dygraph_api(node):
# Note: A api in module dygraph_to_static is not a real dygraph api.
if is_api_in_module(node, "paddle.fluid.dygraph.dygraph_to_static"):
return False
return is_api_in_module(node, "paddle.fluid.dygraph")
def is_paddle_api(node):
return is_api_in_module(node, "paddle.fluid")
# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
func_str = astor.to_source(gast.gast_to_ast(node.func))
try:
import numpy as np
module_result = eval("_is_api_in_module_helper({}, '{}')".format(
func_str, "numpy"))
# BUG: np.random.uniform doesn't have module and cannot be analyzed
# TODO: find a better way
if not module_result:
return func_str.startswith("numpy.") or func_str.startswith("np.")
except NameError:
return False
def is_control_flow_to_transform(node, var_name_to_type):
"""
Determines whether the node is a Paddle control flow statement which needs to
transform into a static graph control flow statement.
"""
assert isinstance(node, gast.AST), \
"The type of input node must be gast.AST, but received %s." % type(node)
if isinstance(node, gast.If):
from .ifelse_transformer import IfConditionVisitor
if_visitor = IfConditionVisitor(
node.test, node_var_type_map=var_name_to_type)
return if_visitor.is_control_flow()
if isinstance(node, gast.For):
# TODO: make a better condition
return True
if isinstance(node, gast.While):
# TODO: make a better condition
return True
return False
def _delete_keywords_from(node):
assert isinstance(node, gast.Call)
func_src = astor.to_source(gast.gast_to_ast(node.func))
import paddle.fluid as fluid
full_args = eval("inspect.getargspec({})".format(func_src))
full_args_name = full_args[0]
node.keywords = [k for k in node.keywords if k.arg in full_args_name]
return
def to_static_api(dygraph_class):
if dygraph_class in dygraph_class_to_static_api:
return dygraph_class_to_static_api[dygraph_class]
else:
raise NotImplementedError("Paddle dygraph API {} cannot be converted "
"to static graph at present.".format(
dygraph_class))
def _add_keywords_to(node, dygraph_api_name):
assert isinstance(node, gast.Call)
if dygraph_api_name == "Linear":
for ast_keyword in node.keywords:
if ast_keyword.arg == "output_dim":
ast_keyword.arg = "size"
node.keywords.append(
gast.keyword(
arg="num_flatten_dims",
value=gast.Constant(
value=-1, kind=None)))
if dygraph_api_name == "BilinearTensorProduct":
for ast_keyword in node.keywords:
if ast_keyword.arg == "output_dim":
ast_keyword.arg = "size"
if dygraph_api_name == "PRelu":
for ast_keyword in node.keywords:
if ast_keyword.arg == "input":
ast_keyword.arg = "x"
return
def is_to_variable(node):
assert isinstance(node, gast.Call)
if is_dygraph_api(node):
api_name = ast_to_source_code(node.func).strip()
return api_name.endswith("to_variable")
return False
def to_static_ast(node, class_node):
assert isinstance(node, gast.Call)
assert isinstance(class_node, gast.Call)
static_api = to_static_api(class_node.func.attr)
node.func = gast.Attribute(
attr=static_api,
ctx=gast.Load(),
value=gast.Attribute(
attr='layers',
ctx=gast.Load(),
value=gast.Name(
ctx=gast.Load(), id='fluid', annotation=None,
type_comment=None)))
update_args_of_func(node, class_node, 'forward')
node.args.extend(class_node.args)
node.keywords.extend(class_node.keywords)
_add_keywords_to(node, class_node.func.attr)
_delete_keywords_from(node)
gast.fix_missing_locations(node)
return node
def to_assign_node(node):
# Transform dygraph api `fluid.dygraph.to_variable` to static api `fluid.layers.assign`.
# NOTE:
# 1. Api `to_variable` supports data type {float16, float32, float64, int16, int32, int64, uint8, uint16},
# but api `assign` only supports {float32, float64, int32, int64, bool};
# 2. If the input of api `assign` is numpy.ndarray, its size cannot be greater than 1024 * 1024.
assert isinstance(node, gast.Call)
assign_api = gast.parse('fluid.layers.assign').body[0].value
node.func = assign_api
if node.args:
node.args = [node.args[0]]
node.keywords = []
else:
for idx, kw in enumerate(node.keywords):
if kw.arg == 'value':
node.keywords[idx].arg = 'input'
node.keywords = [node.keywords[idx]]
node.args = []
break
return node
def update_args_of_func(node, dygraph_node, method_name):
assert isinstance(node, gast.Call)
if method_name not in ["__init__", "forward"]:
raise ValueError(
"The method name of class to update args should be '__init__' or 'forward'"
)
class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
import paddle.fluid as fluid
if method_name == "__init__" or eval(
"issubclass({}, fluid.dygraph.Layer)".format(class_src)):
full_args = eval("inspect.getargspec({}.{})".format(class_src,
method_name))
full_args_name = [
arg_name for arg_name in full_args[0] if arg_name != "self"
]
else:
full_args_name = []
added_keywords = []
for idx, arg in enumerate(node.args):
added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))
node.args = []
node.keywords = added_keywords + node.keywords
def create_api_shape_node(tensor_shape_node):
assert isinstance(tensor_shape_node, (gast.Attribute, gast.Subscript))
if isinstance(tensor_shape_node, gast.Attribute):
api_shape_node = gast.Call(
func=gast.parse('fluid.layers.shape').body[0].value,
args=[tensor_shape_node.value],
keywords=[])
return api_shape_node
if isinstance(tensor_shape_node, gast.Subscript):
result_node = copy.deepcopy(tensor_shape_node)
result_node.value = create_api_shape_node(result_node.value)
return result_node
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
return gast.parse('%s = fluid.layers.fill_constant(%s, "%s", %s)' %
(name, str(shape), dtype, str(value)))
def get_attribute_full_name(node):
assert isinstance(
node,
gast.Attribute), "Input non-Attribute node to get attribute full name"
return astor.to_source(gast.gast_to_ast(node)).strip()
def generate_name_node(name_ids, ctx=gast.Load()):
"""
Generate list or gast.Tuple of ast.Name for Return statement.
"""
if isinstance(name_ids, six.string_types):
name_ids = [name_ids]
if not isinstance(name_ids, (list, tuple, set)):
raise TypeError('name_ids must be list or tuple or set, but received %s'
% type(type(name_ids)))
gast_names = [
gast.Name(
id=name_id, ctx=ctx, annotation=None, type_comment=None)
for name_id in name_ids
]
if len(gast_names) == 1:
name_node = gast_names[0]
else:
name_node = gast.Tuple(elts=gast_names, ctx=ctx)
return name_node
def create_funcDef_node(nodes, name, input_args, return_name_ids):
"""
Wrapper all statements of nodes into one ast.FunctionDef, which can be
called by ast.Call.
"""
nodes = copy.copy(nodes)
# add return statement
if return_name_ids:
nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
else:
nodes.append(gast.Return(value=None))
func_def_node = gast.FunctionDef(
name=name,
args=input_args,
body=nodes,
decorator_list=[],
returns=None,
type_comment=None)
return func_def_node
def index_in_list(array_list, item):
try:
return array_list.index(item)
except ValueError:
# Item not in array_list
return -1
def create_assign_node(name, node):
"""
Creates a `gast.Assign` node by given name_id as target and node as value.
"""
targets = generate_name_node(name, ctx=gast.Store())
assign_node = gast.Assign(targets=[targets], value=node)
return targets, assign_node
class RenameTransformer(gast.NodeTransformer):
def __init__(self, node):
assert isinstance(
node, gast.AST), "RenameTransformer only accepts gast.AST as input"
self.root = node
self.old_name = ""
self.new_name = ""
def rename(self, old_name, new_name):
self.old_name = old_name
self.new_name = new_name
self.visit(self.root)
def visit_Name(self, node):
self.generic_visit(node)
if node.id == self.old_name:
node.id = self.new_name
return node
def visit_Attribute(self, node):
self.generic_visit(node)
attr_full_name = get_attribute_full_name(node)
if attr_full_name == self.old_name:
new_name_node = gast.parse(self.new_name).body[0].value
return new_name_node
return node
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
"""
Transform modified AST of decorated function into python callable object.
TODO: If only decorate one of inner function instead of decorating the main
function, the other inner functions are invisible for the decorated function.
"""
source = ast_to_source_code(ast_root)
if six.PY2:
source = source.encode('utf-8')
f = tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False)
else:
f = tempfile.NamedTemporaryFile(
mode='w', suffix='.py', delete=False, encoding='utf-8')
with f:
module_name = os.path.basename(f.name[:-3])
f.write(source)
if delete_on_exit:
atexit.register(lambda: os.remove(f.name))
module = imp.load_source(module_name, f.name)
func_name = dyfunc.__name__
if not hasattr(module, func_name):
raise ValueError(
'Function: %s doesn\'t exist in the Module transformed from AST.' %
func_name)
callable_func = getattr(module, func_name)
# After transform dygraph function into callable_func saved in tmp file,
# it lost the global variables from imported statements or defined in source file.
# Recovers the necessary variables by `__globals__`.
recover_globals_attribute(dyfunc, callable_func)
return callable_func, f.name
def recover_globals_attribute(src_obj, dst_obj):
attr_name = '__globals__'
src_globals = getattr(src_obj, attr_name, {})
dst_globals = getattr(dst_obj, attr_name, {})
for k, v in src_globals.items():
# ignore builtin attribute.
if not (k.startswith('__') and k.endswith('__')):
dst_globals[k] = v
def ast_to_source_code(ast_node):
"""
Transformers ast node into source code.
"""
if not isinstance(ast_node, (gast.AST, ast.AST)):
raise TypeError(
"Type of ast_root should be gast.AST or ast.AST, but received %s." %
type(ast_node))
if isinstance(ast_node, gast.AST):
ast_node = gast.gast_to_ast(ast_node)
source_code = astor.to_source(ast_node)
return source_code