You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/doc/fluid/dev/new_op_cn.md

319 lines
14 KiB

# 如何写新的Operator
- [概念简介](#概念简介)
- [实现C++类](#实现c类)
- [定义ProtoMaker类](#定义protomaker类)
- [定义Operator类](#定义operator类)
- [定义OpKernel类](#定义opkernel类)
- [注册Operator](#注册operator)
- [编译](#编译)
- [绑定Python](#绑定python)
- [实现单元测试](#实现单元测试)
- [前向Operator单测](#前向operator单测)
- [反向Operator单测](#反向operator单测)
- [编译和执行](#编译和执行)
- [注意事项](#注意事项)
## 概念简介
简单介绍需要用到基类,详细介绍请参考设计文档。
- `framework::OperatorBase`: Operator(简写Op)基类。
- `framework::OpKernel`: Op计算函数的基类称作Kernel。
- `framework::OperatorWithKernel`继承自OperatorBaseOp有计算函数称作有Kernel。
- `class OpProtoAndCheckerMaker`描述该Op的输入、输出、属性、注释,主要用于Python API接口生成
7 years ago
依据是否包含kernel可以将Op分为两种包含Kernel的Op和不包含kernel的Op前者Op的定义继承自`OperatorWithKernel`,后者继承自`OperatorBase`。本教程主要介绍带Kernel的Op如何写简单总结Op需要包含的内容如下
内容 | 定义位置
-------------- | :----------------------
8 years ago
OpProtoMake定义 | `.cc`文件Backward Op不需要定义OpProtoMake
Op定义 | `.cc`文件
Kernel实现 | CPU、CUDA共享Kernel实现在`.h`文件中否则CPU 实现在`.cc`文件中CUDA 实现在`.cu`文件中。
注册Op | Op注册实现在`.cc`文件Kernel注册CPU实现在`.cc`文件中CUDA实现在`.cu`文件中
8 years ago
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。
8 years ago
## 实现C++类
### 定义ProtoMaker类
矩阵乘法的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。
首先定义`ProtoMaker`来描述该Op的输入、输出并添加注释
```cpp
8 years ago
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
8 years ago
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor), 2D tensor of size (M x K)");
AddInput("Y", "(Tensor), 2D tensor of size (K x N)");
AddOutput("Out", "(Tensor), 2D tensor of size (M x N)");
8 years ago
AddComment(R"DOC(
Two Element Mul Operator.
The equation is: Out = X * Y
)DOC");
}
};
```
[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)继承自`framework::OpProtoAndCheckerMaker`构造函数含有2个参数
- `framework::OpProto` 前者存储Op的输入输出和参数属性将用于Python API接口的生成。
- `framework::OpAttrChecker` :后者用于检查参数属性的合法性。
构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加Op的注释。这些函数会将对应内容添加到`OpProto`中。
上面的代码在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守[命名规范](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md)。
再以[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)为例:
```cpp
8 years ago
template <typename AttrType>
class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of scale operator.").NotInGradient();
AddOutput("Out", "The output tensor of scale operator.").NotInGradient();
AddComment(R"DOC(Scale operator
The equation is: Out = scale*X
)DOC");
AddAttr<AttrType>("scale", "scale of scale operator.").SetDefault(1.0);
}
};
```
这个例子有两处不同:
- `AddInput("X","...").NotInGradient()` : 表示`X`这个输入不参与`ScaleOp`对应的梯度Op计算之中如果Op的某个输入不参与反向梯度的计算请显示地调用`.NotInGradient()`进行设置。
- `AddAttr<AttrType>("scale", "...").SetDefault(1.0);` : 增加`scale`系数作为参数属性并且设置默认值为1.0。
### 定义Operator类
下面的点实现了MulOp的定义
```cpp
8 years ago
class MulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dim0 = ctx.Input<Tensor>("X")->dims();
auto dim1 = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_EQ(dim0.size(), 2,
"input X(%s) should be a tensor with 2 dims, a matrix",
ctx.op_.Input("X"));
PADDLE_ENFORCE_EQ(dim1.size(), 2,
"input Y(%s) should be a tensor with 2 dims, a matrix",
ctx.op_.Input("Y"));
PADDLE_ENFORCE_EQ(
dim0[1], dim1[0],
"First matrix's width must be equal with second matrix's height.");
ctx.Output<Tensor>("Out")->Resize({dim0[0], dim1[1]});
}
};
```
[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22)继承自`OperatorWithKernel`。`public`成员:
```cpp
using framework::OperatorWithKernel::OperatorWithKernel;
```
这句表示使用基类`OperatorWithKernel`的构造函数,也可写成:
```cpp
8 years ago
MulOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
```
还需要重写`InferShape`接口。`InferShape`为const函数不能修改Op的成员变量参数为`const framework::InferShapeContext &ctx`,通过该参数可获取到输入输出以及属性。它的功能是:
- 1). 做检查, 尽早报错:检查输入数据维度、类型等是否合法。
- 2). 设置输出Tensor的形状。
通常`OpProtoMaker`和`Op`类的定义写在`.cc`文件中,和下面将要介绍的注册函数一起放在`.cc`中
### 定义OpKernel类
`MulKernel`继承自`framework::OpKernel`,带有下面两个模板参数:
- `typename DeviceContext`: 表示设备类型,不同设备(CPU、CUDA)共享同一个Kernel时需加该模板参数不共享则不加一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。
- `typename T` : 表示数据类型,如`float`, `double`等。
需要为`MulKernel`类重写`Compute`接口。
- `Compute`接受一个输入参数:`const framework::ExecutionContext& context`。
- 与`InferShapeContext`相比,`ExecutionContext`增加了设备类型,同样可获取到输入输出和属性参数。
- `Compute`函数里实现`OpKernel`的具体计算逻辑。
下面是 `MulKernel` `Compute`的实现:
```cpp
template <typename DeviceContext, typename T>
class MulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<Tensor>("X");
auto* Y = context.Input<Tensor>("Y");
auto* Z = context.Output<Tensor>("Out");
Z->mutable_data<T>(context.GetPlace());
auto& device_context = context.template device_context<DeviceContext>();
math::matmul<DeviceContext, T>(*X, false, *Y, false, 1, Z, 0, device_context);
}
};
```
需要注意:**不同设备(CPU、CUDA)共享一个Op定义是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。**
`MulOp`的CPU、CUDA实现共享同一个`Kernel`。`OpKernel`不共享的例子可以参考:[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。
为了使`OpKernel`的计算过程书写更加简单并且CPU、CUDA的代码可以复用我们通常借助 Eigen unsupported Tensor模块来实现`Compute`接口。关于在PaddlePaddle中如何使用Eigen库请参考[使用文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md)。
到此前向Op实现完成。接下来需要在`.cc`文件中注册该op和kernel。
反向Op类的定义反向OpKernel的定义与前向Op类似这里不再赘述。**但需注意反向Op没有`ProtoMaker`**。
### 注册Operator
- 在`.cc`文件中注册前向、反向Op类注册CPU Kernel。
```cpp
namespace ops = paddle::operators;
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>);
```
在上面的代码中:
- `REGISTER_OP` 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`。
- `REGISTER_OP_WITHOUT_GRADIENT` 用于注册没有反向的Op。
- `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulGradKernel`类。
-`.cu`文件中注册CUDA Kernel。
- 请注意如果CUDA Kernel的实现基于Eigen unsupported模块那么在 `.cu`的开始请加上宏定义 `#define EIGEN_USE_GPU`,代码示例如下:
```cpp
// if use Eigen unsupported module before include head files
#define EIGEN_USE_GPU
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(mul, ops::MulKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::CUDADeviceContext, float>);
```
### 编译
运行下面命令可以进行编译:
```
make mul_op
```
## 绑定Python
系统会对新增的op自动绑定Python并链接到生成的lib库中。
## 实现单元测试
单测包括对比前向Op不同设备(CPU、CUDA)的实现、对比反向OP不同设备(CPU、CUDA)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。
### 前向Operator单测
Op单元测试继承自`OpTest`。各项更加具体的单元测试在`TestMulOp`里完成。测试Operator需要
1. 在`setUp`函数定义输入、输出,以及相关的属性参数。
2. 生成随机的输入数据。
3. 在Python脚本中实现与前向operator相同的计算逻辑得到输出值与operator前向计算的输出进行对比。
4. 反向计算已经自动集成进测试框架,直接调用相应接口即可。
```python
import unittest
import numpy as np
from op_test import OpTest
class TestMulOp(OpTest):
def setUp(self):
self.op_type = "mul"
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
```
上面的代码首先导入依赖的包,下面是对`setUp`函数中操作的重要变量的详细解释:
- `self.op_type = "mul" ` : 定义类型与operator注册时注册的类型一致。
- `self.inputs` : 定义输入,类型为`numpy.array`,并初始化。
- `self.outputs` : 定义输出并在Python脚本中完成与operator同样的计算逻辑返回Python端的计算结果。
### 反向operator单测
而反向测试中:
- `test_check_grad_normal`中调用`check_grad`使用数值法检测梯度正确性和稳定性。
- 第一个参数`["X", "Y"]` : 指定对输入变量`X`、`Y`做梯度检测。
- 第二个参数`"Out"` : 指定前向网络最终的输出目标变量`Out`。
- 第三个参数`max_relative_error`:指定检测梯度时能容忍的最大错误值。
- `test_check_grad_ingore_x`和`test_check_grad_ingore_y`分支用来测试只需要计算一个输入梯度的情况。
### 编译和执行
`python/paddle/v2/framework/tests` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。
请注意,**不同于Op的编译测试运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake paddle_dir -DWITH_TESTING=ON`。编译成功后,执行下面的命令来运行单元测试:
8 years ago
```bash
make test ARGS="-R test_mul_op -V"
```
8 years ago
或者:
8 years ago
```bash
ctest -R test_mul_op
```
## 注意事项
- 为每个Op创建单独的`*_op.h`(如有)、`*_op.cc`和`*_op.cu`如有。不允许一个文件中包含多个Op这将会导致编译出错。
- 注册Op时的类型名需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OP(B, ...)`等,这将会导致单元测试出错。
- 如果Op没有实现CUDA Kernel请不要创建空的`*_op.cu`,这将会导致单元测试出错。
- 如果多个Op依赖一些共用的函数可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。