You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
64 lines
1.9 KiB
64 lines
1.9 KiB
9 years ago
|
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include "GradientMachine.h"
|
||
|
#include "NeuralNetwork.h"
|
||
|
|
||
|
#include "paddle/utils/Locks.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
|
||
|
class MultiNetwork : public NeuralNetwork {
|
||
|
public:
|
||
|
explicit MultiNetwork(std::string subModelName = "")
|
||
|
: NeuralNetwork(subModelName) {}
|
||
|
|
||
|
virtual void init(const ModelConfig& config, ParamInitCallback callback,
|
||
|
const std::vector<ParameterType>& parameterTypes,
|
||
|
bool useGpu);
|
||
|
|
||
|
virtual void prefetch(const std::vector<Argument>& inArgs);
|
||
|
|
||
|
virtual void forward(const std::vector<Argument>& inArgs,
|
||
|
std::vector<Argument>* outArgs, PassType passType);
|
||
|
|
||
|
virtual void backward(const UpdateCallback& callback = nullptr);
|
||
|
|
||
|
void forwardBackward(const std::vector<Argument>& inArgs,
|
||
|
std::vector<Argument>* outArgs, PassType passType,
|
||
|
const UpdateCallback& callback);
|
||
|
|
||
|
virtual void onPassEnd();
|
||
|
|
||
|
virtual Evaluator* makeEvaluator();
|
||
|
|
||
|
virtual void eval(Evaluator* evaluator);
|
||
|
|
||
|
const std::vector<std::unique_ptr<NeuralNetwork>>& getSubNetworks() const {
|
||
|
return subNetworks_;
|
||
|
}
|
||
|
|
||
|
virtual void start(const TrainerConfig& config,
|
||
|
DataProviderPtr dataProvider);
|
||
|
|
||
|
virtual void finish();
|
||
|
|
||
|
protected:
|
||
|
std::vector<std::unique_ptr<NeuralNetwork>> subNetworks_;
|
||
|
};
|
||
|
} // namespace paddle
|