You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
4.1 KiB
107 lines
4.1 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
Indicesou may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/operators/norm_op.h"
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
class NormOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
NormOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||
|
AddInput(
|
||
|
"X",
|
||
|
"(Tensor) The input tensor of norm operator. "
|
||
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
||
|
"number of channels, H and W is the height and width of feature.");
|
||
|
AddInput("Scale",
|
||
|
"(Tensor) The input tensor of norm operator. "
|
||
|
"The format of input tensor is C * 1.");
|
||
|
AddAttr<float>("epsilon",
|
||
|
"(float, default 1e-10) Constant "
|
||
|
"for numerical stability.")
|
||
|
.SetDefault(1.0e-10f);
|
||
|
AddOutput("Out",
|
||
|
"(Tensor) The output tensor of norm operator."
|
||
|
"N * M."
|
||
|
"M = C * H * W");
|
||
|
AddComment(R"DOC(
|
||
|
"Input shape: $(N, C, H, W)$
|
||
|
Sclae shape: $(C, 1)$
|
||
|
Output shape: $(N, C, H, W)$
|
||
|
Where
|
||
|
forward
|
||
|
$$
|
||
|
[\frac {x_{1}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{2}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{3}}{\sqrt{\sum{x_{i}^{2}}}} \cdot \cdot \cdot \frac {x_{n}}{\sqrt{\sum{x_{i}^{2}}}}]
|
||
|
$$
|
||
|
backward
|
||
|
$$
|
||
|
\frac{\frac{\mathrm{d}L }{\mathrm{d}y_{1}} - \frac {x_{1}\sum {\frac{\mathrm{d} L}{\mathrm{d} y_{j}}}x_{j}}{\sum x_{j}^{2}} }{\sqrt{\sum{x_{j}^{2}}}}
|
||
|
$$
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class NormOp : public framework::OperatorWithKernel {
|
||
|
protected:
|
||
|
framework::OpKernelType GetKernelType(
|
||
|
const framework::ExecutionContext& ctx) const override {
|
||
|
return framework::OpKernelType(
|
||
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
||
|
ctx.device_context());
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||
|
"Input(X) of NormOp"
|
||
|
"should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||
|
"Output(Out) of NormOp should not be null.");
|
||
|
auto in_x_dims = ctx->GetInputDim("X");
|
||
|
ctx->SetOutputDim("Out", in_x_dims);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class NormOpGrad : public framework::OperatorWithKernel {
|
||
|
protected:
|
||
|
framework::OpKernelType GetKernelType(
|
||
|
const framework::ExecutionContext& ctx) const override {
|
||
|
return framework::OpKernelType(
|
||
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
||
|
ctx.device_context());
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
||
|
"Input(X@GRAD) should not be null.");
|
||
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||
|
}
|
||
|
};
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OP(norm, ops::NormOp, ops::NormOpMaker, norm_grad, ops::NormOpGrad);
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
norm, ops::NormKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::NormKernel<paddle::platform::CPUDeviceContext, double>);
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
norm_grad, ops::NormGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::NormGradKernel<paddle::platform::CPUDeviceContext, double>);
|