You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/one_hot_op.cu

99 lines
3.5 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/one_hot_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
template <typename InT, typename OutT>
__global__ void FillOutputKernel(const InT* p_in_data, OutT* p_out_data,
const int64_t numel, const int depth) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
supports collective communicated training (#18175) * fix prepare context redundant code problem, optimize executor by caching create_varaiables test=develop * supports collective training in executor * make fetch_list runable with variables, add more unittest for use_program_cache test=develop * fix comment test=develop * use unique name for nccl_id * supports output to stream in program_to_code * insert sync_comm_stream before regularization; add skip_op_callstack capability in program_to_code * set op role in collective training * add collective op role * remove orig file * add build optimizer by strategy * add collective strategy * refine collective strategy * add multi-process role maker * refine strategy building factory so that we can easily plugin more strategy * scale loss grad in collective sgd transpiler * add support for distributed fc * code format * revert some features for dist fc * add support for distributed fc training * fix prepare context redundant code problem, optimize executor by caching create_varaiables test=develop * supports collective training in executor * make fetch_list runable with variables, add more unittest for use_program_cache test=develop * use unique name for nccl_id * supports output to stream in program_to_code * insert sync_comm_stream before regularization; add skip_op_callstack capability in program_to_code * set op role in collective training * add collective op role * fix comment test=develop * remove orig file * add build optimizer by strategy * add collective strategy * refine collective strategy * add multi-process role maker * refine strategy building factory so that we can easily plugin more strategy * scale loss grad in collective sgd transpiler * add support for distributed fc * code format * revert some features for dist fc * add support for distributed fc training * test=develop add collective op unittest standard * test=develop remove the test_collective directory * test=develop remove the test_collective directory * remove slicegather test * code format for reducescatter * update attr of shard_index_op * Modify macro nccl_helper * remove test without distribute * macro collective_helper * marcro update * test=develop update support python3.5 * test=develop change gpu memory use to 0.1 when test * test=develop update ut equal func * test=develop set flags to 1.5 * test=develop fix pickle dumple py35 * test=develop fix divide in slice and add sync_comm_stream update atol and rtol to 1e-05 rm shard_index op and test modify read input from file to read from memory remove origin_program in framework and add i/o in c_sync_calc_stream * test=develop update unittest sync operator I/O
6 years ago
if (idx < numel && p_in_data[idx] >= 0 && p_in_data[idx] < depth) {
*(p_out_data + (idx * depth) + p_in_data[idx]) = 1.0;
}
}
template <typename DeviceContext, typename InT>
struct OneHotOpCUDAFunctor {
const framework::LoDTensor* in_;
framework::LoDTensor* out_;
const DeviceContext& ctx_;
int depth_;
OneHotOpCUDAFunctor(const framework::LoDTensor* in, framework::LoDTensor* out,
int depth, const DeviceContext& ctx)
: in_(in), out_(out), depth_(depth), ctx_(ctx) {}
template <typename OutT>
void apply() const {
auto* p_in_data = in_->data<InT>();
auto numel = in_->numel();
auto* p_out_data = out_->mutable_data<OutT>(ctx_.GetPlace());
auto stream = ctx_.stream();
math::set_constant(ctx_, out_, 0.0);
FillOutputKernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
PADDLE_CUDA_NUM_THREADS,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
p_in_data, p_out_data, numel, depth_);
}
};
using LoDTensor = framework::LoDTensor;
template <typename DeviceContext, typename T>
class OneHotCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out = context.Output<LoDTensor>("Out");
int depth = -1;
if (context.HasInput("depth_tensor")) {
auto* depth_tensor = context.Input<framework::Tensor>("depth_tensor");
if (platform::is_gpu_place(depth_tensor->place())) {
framework::Tensor temp;
TensorCopySync(*depth_tensor, platform::CPUPlace(), &temp);
depth = *temp.data<int32_t>();
} else {
depth = *depth_tensor->data<int32_t>();
}
auto in_dims = in->dims();
framework::DDim out_dims(in_dims);
out_dims[out_dims.size() - 1] = depth;
out->Resize(out_dims);
} else {
depth = context.Attr<int>("depth");
}
framework::VisitDataType(
[WIP] Move DataType enum inside VarType (#8447) * Move Pod Types from DataType enum to Type enum * Fixed data_type.h * Fix type in TensorDesc * Add comment to framework.proto * Fixed type in data_type.h * Updated format of type in data_type.h * Fix var_desc.h * Fix op_kernel_type.h * Fixed data_type_transform_test.cc * Fix operator.h * Fixed data_type_transform.cc * Fixed op_kernel_type_test.cc * Fix operator.cc * Fixed data_layout_transform_test.cc * Fix var_desc.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * fixed protobuf.cc * Fix data_layout_transform_test.cc and op_kernel_type_test.cc * Fixed rnn_memory_helper_op.cc * Fix progrma_desc_test.cc * Fixed fill_constant_batch_size_like_op.cc * Fix operator_test.cc * Fixed fill_constant_op.cc * Fixed gaussian_random_op.cc * Fixed uniform_random_op.cc * Fixed edit_distance_op.cc * Fixed fill_constant_batch_size_like_op.cc * Fixed rnn_memory_helper_op.cc * Fixed chunk_eval_op.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * Fixed cast_op.h * Fixed cast_op.h * Fix fill constant op * Fixed clang for assign_value_op.cc * Fix one_hot_op.h * Fix one_hot_op.cc * Fix fill_op.cc * Fixed sum_op.cc * Fixed sum_op clang * Fix uniform_random_op.cc * Fix gaussian_random_op.cc * Fix backward.cc * Fix protobuf.cc * Fixed prune_test.cc * Fixed op_registry_test.cc * Fix data_device_transform_test.cu * Fix travis error * Fixed one_hot_op.cu * Fixed op_registry_test.cc * Fixed nccl_op.cc * Fixing python tests * Revert "Fixing python tests" This reverts commit fccaa4c5818ed9f379ea1ce4315066cc78076c64. * Fixing Pybind to remove data type * Fixing tensor.py * Updated the new files: * Resolve error in merge conflict of fill_constant_batch_size_like_op.cc
7 years ago
static_cast<framework::proto::VarType::Type>(
context.Attr<int>("dtype")),
OneHotOpCUDAFunctor<DeviceContext, T>(
in, out, depth, context.template device_context<DeviceContext>()));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
one_hot, ops::OneHotCUDAKernel<paddle::platform::CUDADeviceContext, int>,
ops::OneHotCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);