You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/metrics/auc_op.cc

113 lines
4.2 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
8 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/metrics/auc_op.h"
8 years ago
namespace paddle {
namespace operators {
8 years ago
class AucOp : public framework::OperatorWithKernel {
8 years ago
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Predict"),
"Input of Out should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Label"),
"Input of Label should not be null.");
auto predict_width = ctx->GetInputDim("Predict")[1];
PADDLE_INFERSHAPE_ENFORCE_EQ(ctx, predict_width, 2,
"Only support binary classification");
auto predict_height = ctx->GetInputDim("Predict")[0];
auto label_height = ctx->GetInputDim("Label")[0];
PADDLE_INFERSHAPE_ENFORCE_EQ(ctx, predict_height, label_height,
"Out and Label should have same height.");
8 years ago
int num_pred_buckets = ctx->Attrs().Get<int>("num_thresholds") + 1;
int slide_steps = ctx->Attrs().Get<int>("slide_steps");
PADDLE_ENFORCE_GE(num_pred_buckets, 1, "num_thresholds must larger than 1");
PADDLE_ENFORCE_GE(slide_steps, 0, "slide_steps must be natural number");
ctx->SetOutputDim("AUC", {1});
slide_steps = slide_steps == 0 ? 1 : slide_steps;
ctx->SetOutputDim("StatPosOut", {slide_steps, num_pred_buckets});
ctx->SetOutputDim("StatNegOut", {slide_steps, num_pred_buckets});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("Predict")->type(),
platform::CPUPlace());
8 years ago
}
};
class AucOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Predict",
"A floating point 2D tensor with shape [batch_size, 2], values "
"are in the range [0, 1]."
"Typically, this tensor indicates the probability of each label");
8 years ago
AddInput("Label",
"A 2D int tensor indicating the label of the training data. "
"shape: [batch_size, 1]");
8 years ago
// TODO(typhoonzero): support weight input
AddInput("StatPos", "Statistic value when label = 1");
AddInput("StatNeg", "Statistic value when label = 0");
8 years ago
AddOutput("AUC",
8 years ago
"A scalar representing the "
"current area-under-the-curve.");
AddOutput("StatPosOut", "Statistic value when label = 1");
AddOutput("StatNegOut", "Statistic value when label = 0");
8 years ago
8 years ago
AddAttr<std::string>("curve", "Curve type, can be 'ROC' or 'PR'.")
8 years ago
.SetDefault("ROC");
AddAttr<int>(
"num_thresholds",
"The number of thresholds to use when discretizing the roc curve.")
.SetDefault((2 << 12) - 1);
AddAttr<int>("slide_steps", "Use slide steps to calc batch auc.")
.SetDefault(1);
AddComment(R"DOC(
Area Under The Curve (AUC) Operator.
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation. As a note:
If input label contains values other than 0 and 1, it will be cast
to bool. You can find the relevant definitions here:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
There are two types of possible curves:
1. ROC: Receiver operating characteristic
2. PR: Precision Recall
)DOC");
8 years ago
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
8 years ago
REGISTER_OP_WITHOUT_GRADIENT(auc, ops::AucOp, ops::AucOpMaker);
8 years ago
REGISTER_OP_CPU_KERNEL(auc, ops::AucKernel<paddle::platform::CPUPlace, float>);