You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/one_hot_op.cc

127 lines
4.5 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/one_hot_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"
namespace paddle {
namespace operators {
class OneHotOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of OneHotOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of OneHotOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_GE(x_dims.size(), 2,
"Rank of Input(X) should be at least 2.");
if (ctx->IsRuntime() || x_dims[x_dims.size() - 1] > 0) {
PADDLE_ENFORCE_GE(x_dims[x_dims.size() - 1], 1U,
"Last dimension of Input(X) should be 1.");
}
framework::DDim out_dims(x_dims);
int depth = ctx->Attrs().Get<int>("depth");
if (ctx->HasInput("depth_tensor")) {
depth = -1;
}
out_dims[out_dims.size() - 1] = depth;
ctx->SetOutputDim("Out", out_dims);
ctx->ShareLoD("X", /* --> */ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const override {
if (var_name == "depth_tensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class OneHotOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(LoDTensor, LoDTensor<int>) Input variable with rank at least 2. "
"The last dimension of X should be 1. Each value of X is an index "
"to indicate the position.");
AddInput("depth_tensor", "(Tensor, Tensor<int>), Length of one-hot vector")
.AsDispensable();
AddOutput("Out",
"(Tensor, Tensor<float>) Output tensor with same rank as X. "
"The tensor consists of one-hot representations of values in X.");
AddAttr<int>("depth",
"A positive integer to specify the length of one-hot vector.")
.SetDefault(-1);
AddAttr<int>("dtype",
"An integer to specify the data type of one-hot "
"vector. The default value is FP32.")
[WIP] Move DataType enum inside VarType (#8447) * Move Pod Types from DataType enum to Type enum * Fixed data_type.h * Fix type in TensorDesc * Add comment to framework.proto * Fixed type in data_type.h * Updated format of type in data_type.h * Fix var_desc.h * Fix op_kernel_type.h * Fixed data_type_transform_test.cc * Fix operator.h * Fixed data_type_transform.cc * Fixed op_kernel_type_test.cc * Fix operator.cc * Fixed data_layout_transform_test.cc * Fix var_desc.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * fixed protobuf.cc * Fix data_layout_transform_test.cc and op_kernel_type_test.cc * Fixed rnn_memory_helper_op.cc * Fix progrma_desc_test.cc * Fixed fill_constant_batch_size_like_op.cc * Fix operator_test.cc * Fixed fill_constant_op.cc * Fixed gaussian_random_op.cc * Fixed uniform_random_op.cc * Fixed edit_distance_op.cc * Fixed fill_constant_batch_size_like_op.cc * Fixed rnn_memory_helper_op.cc * Fixed chunk_eval_op.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * Fixed cast_op.h * Fixed cast_op.h * Fix fill constant op * Fixed clang for assign_value_op.cc * Fix one_hot_op.h * Fix one_hot_op.cc * Fix fill_op.cc * Fixed sum_op.cc * Fixed sum_op clang * Fix uniform_random_op.cc * Fix gaussian_random_op.cc * Fix backward.cc * Fix protobuf.cc * Fixed prune_test.cc * Fixed op_registry_test.cc * Fix data_device_transform_test.cu * Fix travis error * Fixed one_hot_op.cu * Fixed op_registry_test.cc * Fixed nccl_op.cc * Fixing python tests * Revert "Fixing python tests" This reverts commit fccaa4c5818ed9f379ea1ce4315066cc78076c64. * Fixing Pybind to remove data type * Fixing tensor.py * Updated the new files: * Resolve error in merge conflict of fill_constant_batch_size_like_op.cc
7 years ago
.SetDefault(paddle::framework::proto::VarType::FP32);
supports collective communicated training (#18175) * fix prepare context redundant code problem, optimize executor by caching create_varaiables test=develop * supports collective training in executor * make fetch_list runable with variables, add more unittest for use_program_cache test=develop * fix comment test=develop * use unique name for nccl_id * supports output to stream in program_to_code * insert sync_comm_stream before regularization; add skip_op_callstack capability in program_to_code * set op role in collective training * add collective op role * remove orig file * add build optimizer by strategy * add collective strategy * refine collective strategy * add multi-process role maker * refine strategy building factory so that we can easily plugin more strategy * scale loss grad in collective sgd transpiler * add support for distributed fc * code format * revert some features for dist fc * add support for distributed fc training * fix prepare context redundant code problem, optimize executor by caching create_varaiables test=develop * supports collective training in executor * make fetch_list runable with variables, add more unittest for use_program_cache test=develop * use unique name for nccl_id * supports output to stream in program_to_code * insert sync_comm_stream before regularization; add skip_op_callstack capability in program_to_code * set op role in collective training * add collective op role * fix comment test=develop * remove orig file * add build optimizer by strategy * add collective strategy * refine collective strategy * add multi-process role maker * refine strategy building factory so that we can easily plugin more strategy * scale loss grad in collective sgd transpiler * add support for distributed fc * code format * revert some features for dist fc * add support for distributed fc training * test=develop add collective op unittest standard * test=develop remove the test_collective directory * test=develop remove the test_collective directory * remove slicegather test * code format for reducescatter * update attr of shard_index_op * Modify macro nccl_helper * remove test without distribute * macro collective_helper * marcro update * test=develop update support python3.5 * test=develop change gpu memory use to 0.1 when test * test=develop update ut equal func * test=develop set flags to 1.5 * test=develop fix pickle dumple py35 * test=develop fix divide in slice and add sync_comm_stream update atol and rtol to 1e-05 rm shard_index op and test modify read input from file to read from memory remove origin_program in framework and add i/o in c_sync_calc_stream * test=develop update unittest sync operator I/O
6 years ago
AddAttr<bool>("allow_out_of_range",
"If it is set true and the input data is out of range, "
"the output tensor will be filled zeros. The default value "
"is false.")
.SetDefault(false);
AddComment(R"DOC(
One Hot Operator. This operator creates the one-hot representations for input
index values. The following example will help to explain the function of this
operator:
X is a LoDTensor:
X.lod = [[0, 1, 4]]
X.shape = [4, 1]
X.data = [[1], [1], [3], [0]]
set depth = 4
Out is a LoDTensor:
Out.lod = [[0, 1, 4]]
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(one_hot, ops::OneHotOp, ops::OneHotOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
one_hot, ops::OneHotKernel<paddle::platform::CPUDeviceContext, int>,
ops::OneHotKernel<paddle::platform::CPUDeviceContext, int64_t>);