You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/optimizer/parameter_optimizer.cc

75 lines
2.8 KiB

#include <glog/logging.h>
#include "adadelta_optimizer.h"
#include "adagrad_optimizer.h"
#include "adam_optimizer.h"
#include "lr_policy.h"
#include "sgd_optimizer.h"
#include "parameter_optimizer.h"
namespace paddle {
namespace optimizer {
ParameterOptimizer *ParameterOptimizer::Create(const std::string &config_proto,
Tensor *parameter) {
paddle::OptimizerConfig config;
CHECK(config.ParseFromString(config_proto) == 0)
<< "failed parse optimizer config";
auto select_lr_policy = [=](const OptimizerConfig &config) -> LrPolicy * {
if (config.lr_policy() == OptimizerConfig::ConstLr)
return new ConstLr(config.const_lr().learning_rate());
if (config.lr_policy() == OptimizerConfig::LinearLr)
return new LinearLr(config.linear_lr().learning_rate(),
config.linear_lr().lr_decay_a(),
config.linear_lr().lr_decay_b());
// default
LOG(WARNING) << " have not select any LrPolicy. use ConstLr in default";
return new ConstLr(0.1);
};
LrPolicy *lr = select_lr_policy(config);
auto select_optimizer =
[=](Tensor *parameter,
const OptimizerConfig &config) -> ParameterOptimizer * {
if (config.optimizer() == OptimizerConfig::SGD) {
return new SGDOptimizer(parameter,
lr,
config.sgd().momentum(),
config.sgd().decay(),
config.sgd().nesterov());
}
if (config.optimizer() == OptimizerConfig::Adadelta) {
return new AdadeltaOptimizer(parameter,
lr,
config.adadelta().rho(),
config.adadelta().epsilon(),
config.adadelta().decay());
}
if (config.optimizer() == OptimizerConfig::Adagrad) {
return new AdagradOptimizer(
parameter, lr, config.adagrad().epsilon(), config.adagrad().decay());
}
if (config.optimizer() == OptimizerConfig::Adam) {
return new AdamOptimizer(parameter,
lr,
config.adam().beta_1(),
config.adam().beta_2(),
config.adam().epsilon(),
config.adam().decay());
}
// default
LOG(WARNING)
<< "have not select any Optimizer. use SGDOptimizer in default";
return new SGDOptimizer(parameter, lr, 0.0, 0.0, false);
};
return select_optimizer(config);
}
float *ParameterOptimizer::get_weight(int *param_size) const {
*param_size = (int)parameter_->size();
return parameter_->get_buffer();
}
} // namespace optimizer
} // namespace paddle