You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
233 lines
7.9 KiB
233 lines
7.9 KiB
8 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
#include <vector>
|
||
|
#include "glog/logging.h"
|
||
|
#include "paddle/framework/ddim.h"
|
||
|
#include "paddle/framework/eigen.h"
|
||
|
#include "paddle/framework/operator.h"
|
||
|
#include "paddle/framework/tensor.h"
|
||
|
#include "paddle/operators/gather.h"
|
||
|
#include "paddle/operators/scatter.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using namespace paddle::framework;
|
||
|
|
||
|
class CondOp : public OperatorBase {
|
||
|
public:
|
||
|
CondOp(const std::string& type, const VariableNameMap& inputs,
|
||
|
const VariableNameMap& outputs, const AttributeMap& attrs)
|
||
|
: OperatorBase(type, inputs, outputs, attrs) {
|
||
|
index_.resize(2);
|
||
|
sub_net_op_.resize(2);
|
||
|
LOG(INFO) << "Initialization Done.";
|
||
|
}
|
||
|
|
||
|
CondOp(const CondOp& o)
|
||
|
: framework::OperatorBase(
|
||
|
static_cast<const framework::OperatorBase&>(o)) {
|
||
|
// TODO(yuyang18): Implement copy ctor well.
|
||
|
PADDLE_THROW("Not implemented");
|
||
|
}
|
||
|
|
||
|
void CreateScope(const Scope& scope) const {
|
||
|
auto sub_scopes_var = scope.FindVar("SubScopes");
|
||
|
PADDLE_ENFORCE(sub_scopes_var != nullptr, "");
|
||
|
auto sub_scopes = sub_scopes_var->GetMutable<std::vector<Scope*>>();
|
||
|
auto& sub_scope = scope.NewScope();
|
||
|
sub_scopes->push_back(&sub_scope);
|
||
|
}
|
||
|
|
||
|
void CreateIndexTensor(const Scope& scope) const {
|
||
|
auto index_tensors_var = scope.FindVar("IndexTensors");
|
||
|
PADDLE_ENFORCE(index_tensors_var != nullptr, "");
|
||
|
auto& index_tensors =
|
||
|
*index_tensors_var->GetMutable<std::vector<Tensor*>>();
|
||
|
Tensor index_tensor;
|
||
|
index_tensors.push_back(&index_tensor);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* InferShape must be called before Run.
|
||
|
*/
|
||
|
void InferShape(const framework::Scope& scope) const override {
|
||
|
auto sub_scopes_var = scope.FindVar("SubScopes");
|
||
|
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var);
|
||
|
auto& sub_scopes = *sub_scopes_var->GetMutable<std::vector<Scope*>>();
|
||
|
// auto& index_tensors =
|
||
|
// *scope.FindVar("IndexTensors")->GetMutable<std::vector<Tensor*>>();
|
||
|
|
||
|
for (int i = 0; i < 2; ++i) {
|
||
|
// Create two sub scopes for true and false branches
|
||
|
// sub_scopes[0] for the true branch and sub_scopes[1] for the false
|
||
|
// branch
|
||
|
CreateScope(scope);
|
||
|
|
||
|
// Create two tensors for true and false indices
|
||
|
// index_tensors[0] for the true branch and index_tensors[1] for the false
|
||
|
// branch
|
||
|
CreateIndexTensor(scope);
|
||
|
|
||
|
for (auto& input : Inputs("Xs")) {
|
||
|
// Create a new tensor in sub-scope for input-type tensor
|
||
|
Variable* v = sub_scopes[i]->NewVar(input);
|
||
|
Tensor* sub_input = v->GetMutable<Tensor>();
|
||
|
sub_input->Resize(scope.FindVar(input)->GetMutable<Tensor>()->dims());
|
||
|
}
|
||
|
|
||
|
// Inputs that do not require tailoring
|
||
|
/*for (auto& input : (*sub_net_op_[i]).Inputs()) {
|
||
|
// weights are located in the parent scope rather than sub scope
|
||
|
for (auto& var_name : input.second) {
|
||
|
if (!sub_scopes[i]->FindVar(var_name)) {
|
||
|
sub_scopes[i]->NewVar(var_name)->GetMutable<Tensor>();
|
||
|
}
|
||
|
}
|
||
|
}*/
|
||
|
|
||
|
// Outputs
|
||
|
for (auto& output : (*sub_net_op_[i]).Outputs()) {
|
||
|
for (auto& var_name : output.second) {
|
||
|
sub_scopes[i]->NewVar(var_name);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// each net calls InferShape
|
||
|
LOG(INFO) << "OK 3";
|
||
|
sub_net_op_[i]->InferShape(*sub_scopes[i]);
|
||
|
LOG(INFO) << "OK 4";
|
||
|
}
|
||
|
|
||
|
for (auto& output : Outputs("Outs")) {
|
||
|
Tensor* tensor_t_out =
|
||
|
sub_scopes[0]->FindVar(output)->GetMutable<Tensor>();
|
||
|
Tensor* tensor_f_out =
|
||
|
sub_scopes[1]->FindVar(output)->GetMutable<Tensor>();
|
||
|
Tensor* tensor_out = scope.FindVar(output)->GetMutable<Tensor>();
|
||
|
// check output size should be same
|
||
|
PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
|
||
|
"Outputs not of the same shape");
|
||
|
tensor_out->Resize(tensor_t_out->dims());
|
||
|
}
|
||
|
LOG(INFO) << "OK 5";
|
||
|
}
|
||
|
|
||
|
// Set True Block
|
||
|
void set_truenet(std::unique_ptr<OperatorBase> net) {
|
||
|
sub_net_op_[0] = std::move(net);
|
||
|
}
|
||
|
|
||
|
// Set False Block
|
||
|
void set_falsenet(std::unique_ptr<OperatorBase> net) {
|
||
|
sub_net_op_[1] = std::move(net);
|
||
|
}
|
||
|
|
||
|
void Run(const framework::Scope& scope,
|
||
|
const platform::DeviceContext& dev_ctx) const override {
|
||
|
auto sub_scopes = scope.FindVar("SubScopes")->Get<std::vector<Scope*>>();
|
||
|
auto index_tensors =
|
||
|
scope.FindVar("IndexTensors")->Get<std::vector<Tensor*>>();
|
||
|
|
||
|
std::string cond_name = Input("Cond");
|
||
|
Variable* cond_var = scope.FindVar(cond_name);
|
||
|
PADDLE_ENFORCE_NOT_NULL(cond_var)
|
||
|
const Tensor* cond = cond_var->GetMutable<Tensor>();
|
||
|
|
||
|
// Step 1: get the true/false index at runtime
|
||
|
// index_[0]: vector<int>, contains all index for cond[i] == true
|
||
|
// index_[1]: vector<int>, contains all index for cond[i] == false
|
||
|
for (int i = 0; i < 2; ++i) index_[i].clear();
|
||
|
|
||
|
const bool* cond_data = cond->data<bool>();
|
||
|
for (int i = 0; i < cond->dims()[0]; ++i) {
|
||
|
if (cond_data[i])
|
||
|
index_[0].push_back(i);
|
||
|
else
|
||
|
index_[1].push_back(i);
|
||
|
}
|
||
|
// put index_[0] and index_[1] into two tensors:
|
||
|
// index_tensor_[0] and index_tensor_[1]
|
||
|
framework::DDim dim = paddle::framework::make_ddim({0});
|
||
|
for (int i = 0; i < 2; ++i) {
|
||
|
dim[0] = index_[i].size();
|
||
|
int* tmp_ptr =
|
||
|
index_tensors[i]->mutable_data<int>(dim, platform::CPUPlace());
|
||
|
index_tensors[i]->Resize(dim);
|
||
|
memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
|
||
|
}
|
||
|
|
||
|
// Step 2: collect data by calling gather
|
||
|
for (int i = 0; i < 2; ++i) {
|
||
|
// i= 0/i for True and False branches respectively
|
||
|
for (auto& input : Inputs("Xs")) {
|
||
|
// find Tensor
|
||
|
// Tensor* tensor_parent = scope.FindVar(input)->GetMutable<Tensor>();
|
||
|
Variable* v = scope.FindVar(input);
|
||
|
Tensor* tensor_parent = v->GetMutable<Tensor>();
|
||
|
// Tensor* tensor_child =
|
||
|
// sub_scope_[i].FindVar(input)->GetMutable<Tensor>();
|
||
|
v = sub_scopes[i]->FindVar(input);
|
||
|
Tensor* tensor_child = v->GetMutable<Tensor>();
|
||
|
Gather<float>(dev_ctx.GetPlace(), tensor_parent, index_tensors[i],
|
||
|
tensor_child);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Step 3: run
|
||
|
for (int i = 0; i < 2; ++i) sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);
|
||
|
|
||
|
// Step 4: merge output results
|
||
|
for (int i = 0; i < 2; ++i) {
|
||
|
// i= 0/i for True and False branches respectively
|
||
|
// for (auto& output : GetAttr<std::vector<std::string>>("sub_outputs")) {
|
||
|
for (auto& output : Outputs("Outs")) {
|
||
|
// find Tensor
|
||
|
Variable* v = scope.FindVar(output);
|
||
|
Tensor* tensor_parent = v->GetMutable<Tensor>();
|
||
|
v = sub_scopes[i]->FindVar(output);
|
||
|
Tensor* tensor_child = v->GetMutable<Tensor>();
|
||
|
ScatterUpdate<float>(dev_ctx.GetPlace(), tensor_child, index_tensors[i],
|
||
|
tensor_parent);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
// sub_net_op_[0]: subnet_t
|
||
|
// sub_net_op_[1]: subnet_f
|
||
|
std::vector<std::unique_ptr<framework::OperatorBase>> sub_net_op_;
|
||
|
|
||
|
// index_[0]: True_index;
|
||
|
// index_[1]: False_index;
|
||
|
mutable std::vector<std::vector<int>> index_;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
class CondGradientOp final : public OperatorBase {
|
||
|
public:
|
||
|
void Init() override;
|
||
|
|
||
|
virtual void InferShape(const std::shared_ptr<Scope>& scope) const
|
||
|
override;
|
||
|
|
||
|
virtual void Run(const std::shared_ptr<Scope>& scope,
|
||
|
const platform::DeviceContext& dev_ctx) const override;
|
||
|
};*/
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|