You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
6.9 KiB
179 lines
6.9 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/framework/op_registry.h"
|
||
|
#include "paddle/operators/math/math_function.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
using LoDTensor = framework::LoDTensor;
|
||
|
|
||
|
class BipartiteMatchOp : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
|
||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("DisMat"),
|
||
|
"Input(DisMat) of BipartiteMatch should not be null.");
|
||
|
|
||
|
auto dims = ctx->GetInputDim("DisMat");
|
||
|
PADDLE_ENFORCE_EQ(dims.size(), 2, "The rank of Input(DisMat) must be 2.");
|
||
|
|
||
|
ctx->SetOutputDim("ColToRowMatchIndices", dims);
|
||
|
ctx->SetOutputDim("ColToRowMatchDis", dims);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class BipartiteMatchKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
// The match_indices must be initialized to -1 at first.
|
||
|
// The match_dis must be initialized to 0 at first.
|
||
|
void BipartiteMatch(const Tensor& dis, int* match_indices,
|
||
|
T* match_dis) const {
|
||
|
int64_t row = dis.dims()[0];
|
||
|
int64_t col = dis.dims()[1];
|
||
|
auto* dis_data = dis.data<T>();
|
||
|
std::vector<int> row_pool;
|
||
|
for (int i = 0; i < row; ++i) {
|
||
|
row_pool.push_back(i);
|
||
|
}
|
||
|
while (row_pool.size() > 0) {
|
||
|
int max_idx = -1;
|
||
|
int max_row_idx = -1;
|
||
|
T max_dis = -1;
|
||
|
for (int64_t j = 0; j < col; ++j) {
|
||
|
if (match_indices[j] != -1) {
|
||
|
continue;
|
||
|
}
|
||
|
for (int k = 0; k < row_pool.size(); ++k) {
|
||
|
int m = row_pool[k];
|
||
|
// distance is 0 between m-th row and j-th column
|
||
|
if (dis_data[m * col + j] < 1e-6) {
|
||
|
continue;
|
||
|
}
|
||
|
if (dis_data[m * col + j] > max_dis) {
|
||
|
max_idx = j;
|
||
|
max_row_idx = m;
|
||
|
max_dis = dis_data[m * col + j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (max_idx == -1) {
|
||
|
// Cannot find good match.
|
||
|
break;
|
||
|
} else {
|
||
|
PADDLE_ENFORCE_EQ(match_indices[max_idx], -1);
|
||
|
match_indices[max_idx] = max_row_idx;
|
||
|
match_dis[max_idx] = max_dis;
|
||
|
// Erase the row index.
|
||
|
row_pool.erase(
|
||
|
std::find(row_pool.begin(), row_pool.end(), max_row_idx));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||
|
auto* dis_mat = context.Input<LoDTensor>("DisMat");
|
||
|
auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
|
||
|
auto* match_dis = context.Output<Tensor>("ColToRowMatchDis");
|
||
|
|
||
|
auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();
|
||
|
|
||
|
auto col = dis_mat->dims()[1];
|
||
|
|
||
|
int64_t n = dis_mat->lod().size() == 0
|
||
|
? 1
|
||
|
: static_cast<int64_t>(dis_mat->lod().back().size() - 1);
|
||
|
match_indices->mutable_data<int>({n, col}, context.GetPlace());
|
||
|
match_dis->mutable_data<T>({n, col}, context.GetPlace());
|
||
|
|
||
|
math::SetConstant<platform::CPUDeviceContext, int> iset;
|
||
|
iset(dev_ctx, match_indices, static_cast<int>(-1));
|
||
|
math::SetConstant<platform::CPUDeviceContext, T> tset;
|
||
|
tset(dev_ctx, match_dis, static_cast<T>(0));
|
||
|
|
||
|
int* indices = match_indices->data<int>();
|
||
|
T* dis = match_dis->data<T>();
|
||
|
if (n == 1) {
|
||
|
BipartiteMatch(*dis_mat, indices, dis);
|
||
|
} else {
|
||
|
auto lod = dis_mat->lod().back();
|
||
|
for (size_t i = 0; i < lod.size() - 1; ++i) {
|
||
|
Tensor one_ins = dis_mat->Slice(lod[i], lod[i + 1]);
|
||
|
BipartiteMatch(one_ins, indices + i * col, dis + i * col);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
BipartiteMatchOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||
|
AddInput(
|
||
|
"DisMat",
|
||
|
"(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
|
||
|
"[K, M]. It is pair-wise distance matrix between the entities "
|
||
|
"represented by each row and each column. For example, assumed one "
|
||
|
"entity is A with shape [K], another entity is B with shape [M]. The "
|
||
|
"DisMat[i][j] is the distance between A[i] and B[j]. The bigger "
|
||
|
"the distance is, the more similar the pairs are. Please note, "
|
||
|
"This tensor can contain LoD information to represent a batch of "
|
||
|
"inputs. One instance of this batch can contain different numbers of "
|
||
|
"entities.");
|
||
|
AddOutput("ColToRowMatchIndices",
|
||
|
"(Tensor) A 2-D Tensor with shape [N, M] in int type. "
|
||
|
"N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
|
||
|
"means B[j] does not match any entity in i-th instance. "
|
||
|
"Otherwise, it means B[j] is matched to row "
|
||
|
"RowToColMatchIndices[i][j] in i-th instance. The row number of "
|
||
|
"i-th instance is saved in RowToColMatchIndices[i][j].");
|
||
|
AddOutput("ColToRowMatchDis",
|
||
|
"(Tensor) A 2-D Tensor with shape [N, M] in float type. "
|
||
|
"N is batch size. If ColToRowMatchIndices[i][j] is -1, "
|
||
|
"ColToRowMatchDis[i][j] is also -1.0. Otherwise, assumed "
|
||
|
"RowToColMatchIndices[i][j] = d, and the row offsets of each "
|
||
|
"instance are called LoD. Then "
|
||
|
"ColToRowMatchDis[i][j] = DisMat[d+LoD[i]][j]");
|
||
|
AddComment(R"DOC(
|
||
|
This operator is a greedy bipartite matching algorithm, which is used to
|
||
|
obtain the matching with the (greedy) maximum distance based on the input
|
||
|
distance matrix. There are two outputs to save matched indices and distance.
|
||
|
And this operator only calculate matched indices from column to row.
|
||
|
A simple description, this algothrim matched the best (maximum distance)
|
||
|
row entity to the column entity and the matched indices are not duplicated
|
||
|
in each row of ColToRowMatchIndices. If the column entity is not matched
|
||
|
any row entity, set -1 in ColToRowMatchIndices.
|
||
|
|
||
|
Please note that the input DisMat can be LoDTensor (with LoD) or Tensor.
|
||
|
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
|
||
|
If Tensor, the height of ColToRowMatchIndices is 1.
|
||
|
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OPERATOR(bipartite_match, ops::BipartiteMatchOp,
|
||
|
ops::BipartiteMatchOpMaker,
|
||
|
paddle::framework::EmptyGradOpMaker);
|
||
|
REGISTER_OP_CPU_KERNEL(bipartite_match, ops::BipartiteMatchKernel<float>,
|
||
|
ops::BipartiteMatchKernel<double>);
|