You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/auc_op.h

132 lines
4.9 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
8 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
8 years ago
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
8 years ago
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename DeviceContext, typename T>
class AucKernel : public framework::OpKernel<T> {
8 years ago
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* predict = ctx.Input<Tensor>("Predict");
8 years ago
auto* label = ctx.Input<Tensor>("Label");
auto* auc = ctx.Output<Tensor>("AUC");
// Only use output var for now, make sure it's persistable and
// not cleaned up for each batch.
auto* true_positive = ctx.Output<Tensor>("TPOut");
auto* false_positive = ctx.Output<Tensor>("FPOut");
auto* true_negative = ctx.Output<Tensor>("TNOut");
auto* false_negative = ctx.Output<Tensor>("FNOut");
8 years ago
auto* auc_data = auc->mutable_data<double>(ctx.GetPlace());
8 years ago
std::string curve = ctx.Attr<std::string>("curve");
int num_thresholds = ctx.Attr<int>("num_thresholds");
std::vector<double> thresholds_list;
8 years ago
thresholds_list.reserve(num_thresholds);
for (int i = 1; i < num_thresholds - 1; i++) {
thresholds_list[i] = static_cast<double>(i) / (num_thresholds - 1);
8 years ago
}
const double kEpsilon = 1e-7;
8 years ago
thresholds_list[0] = 0.0f - kEpsilon;
thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;
size_t batch_size = predict->dims()[0];
size_t inference_width = predict->dims()[1];
8 years ago
const T* inference_data = predict->data<T>();
const auto* label_data = label->data<int64_t>();
8 years ago
auto* tp_data = true_positive->mutable_data<int64_t>(ctx.GetPlace());
auto* fn_data = false_negative->mutable_data<int64_t>(ctx.GetPlace());
auto* tn_data = true_negative->mutable_data<int64_t>(ctx.GetPlace());
auto* fp_data = false_positive->mutable_data<int64_t>(ctx.GetPlace());
8 years ago
8 years ago
for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
// calculate TP, FN, TN, FP for current thresh
int64_t tp = 0, fn = 0, tn = 0, fp = 0;
for (size_t i = 0; i < batch_size; i++) {
// NOTE: label_data used as bool, labels > 0 will be treated as true.
if (label_data[i]) {
if (inference_data[i * inference_width + 1] >=
(thresholds_list[idx_thresh])) {
8 years ago
tp++;
} else {
8 years ago
fn++;
8 years ago
}
} else {
if (inference_data[i * inference_width + 1] >=
(thresholds_list[idx_thresh])) {
8 years ago
fp++;
8 years ago
} else {
8 years ago
tn++;
8 years ago
}
}
}
// store rates
tp_data[idx_thresh] += tp;
fn_data[idx_thresh] += fn;
tn_data[idx_thresh] += tn;
fp_data[idx_thresh] += fp;
8 years ago
}
// epsilon to avoid divide by zero.
double epsilon = 1e-6;
8 years ago
// Riemann sum to caculate auc.
Tensor tp_rate, fp_rate, rec_rate;
tp_rate.Resize({num_thresholds});
fp_rate.Resize({num_thresholds});
rec_rate.Resize({num_thresholds});
auto* tp_rate_data = tp_rate.mutable_data<double>(ctx.GetPlace());
auto* fp_rate_data = fp_rate.mutable_data<double>(ctx.GetPlace());
auto* rec_rate_data = rec_rate.mutable_data<double>(ctx.GetPlace());
8 years ago
for (int i = 0; i < num_thresholds; i++) {
tp_rate_data[i] = (static_cast<double>(tp_data[i]) + epsilon) /
(tp_data[i] + fn_data[i] + epsilon);
fp_rate_data[i] =
static_cast<double>(fp_data[i]) / (fp_data[i] + tn_data[i] + epsilon);
rec_rate_data[i] = (static_cast<double>(tp_data[i]) + epsilon) /
(tp_data[i] + fp_data[i] + epsilon);
8 years ago
}
8 years ago
*auc_data = 0.0f;
8 years ago
if (curve == "ROC") {
8 years ago
for (int i = 0; i < num_thresholds - 1; i++) {
auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
8 years ago
*auc_data = *auc_data + dx * y;
}
8 years ago
} else if (curve == "PR") {
8 years ago
for (int i = 1; i < num_thresholds; i++) {
auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
*auc_data = *auc_data + dx * y;
}
}
}
};
} // namespace operators
} // namespace paddle