You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/batch_norm_op.cc

540 lines
21 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h"
#include <string>
#include "paddle/fluid/framework/data_layout.h"
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
class BatchNormOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "");
PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "");
PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), "");
PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), "");
PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");
// make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
"Mean and MeanOut should share the same memory");
PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0],
ctx->Outputs("VarianceOut")[0],
"Variance and VarianceOut should share the same memory");
const auto x_dims = ctx->GetInputDim("X");
const DataLayout data_layout = framework::StringToDataLayout(
ctx->Attrs().Get<std::string>("data_layout"));
PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
"Input X must have 2 to 5 dimensions.");
const int64_t C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C);
ctx->SetOutputDim("Y", x_dims);
ctx->SetOutputDim("MeanOut", {C});
ctx->SetOutputDim("VarianceOut", {C});
ctx->SetOutputDim("SavedMean", {C});
ctx->SetOutputDim("SavedVariance", {C});
ctx->ShareLoD("X", "Y");
}
protected:
framework::OpKernelType GetExpectedKernelType(
7 years ago
const framework::ExecutionContext &ctx) const override {
auto input_data_type =
framework::ToDataType(ctx.Input<Tensor>("X")->type());
// By default, the type of the scale, bias, mean,
// and var tensors should both be float. (For float or float16 input tensor)
// or double (For double input tensor).
auto bn_param_type = framework::proto::VarType::FP32;
if (input_data_type == framework::proto::VarType::FP64) {
bn_param_type = framework::proto::VarType::FP64;
}
PADDLE_ENFORCE_EQ(bn_param_type,
framework::ToDataType(ctx.Input<Tensor>("Scale")->type()),
"Scale input should be of float type");
PADDLE_ENFORCE_EQ(bn_param_type,
framework::ToDataType(ctx.Input<Tensor>("Bias")->type()),
"Bias input should be of float type");
PADDLE_ENFORCE_EQ(bn_param_type,
framework::ToDataType(ctx.Input<Tensor>("Mean")->type()),
"Mean input should be of float type");
PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType(
ctx.Input<Tensor>("Variance")->type()),
"Variance input should be of float type");
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::LibraryType library = framework::LibraryType::kPlain;
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
layout = framework::DataLayout::kMKLDNN;
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
}
#endif
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
library);
}
};
class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddAttr<bool>("is_test", "").SetDefault(false);
AddAttr<float>("momentum", "").SetDefault(0.9);
AddAttr<float>("epsilon", "")
.SetDefault(1e-5)
.AddCustomChecker([](const float &epsilon) {
PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
"'epsilon' should be between 0.0 and 0.001.");
});
AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
AddInput("X", "The input tensor");
AddInput("Scale",
"Scale is a 1-dimensional tensor of size C "
"that is applied to the output");
AddInput("Bias",
"Bias is a 1-dimensional tensor of size C "
"that is applied to the output");
AddInput("Mean",
"The global mean (for training) or "
"estimated mean (for testing)");
AddInput("Variance",
"The global variance (for training) "
"or estimated Variance (for testing)");
AddOutput("Y", "result after normalization").Reuse("X");
AddOutput("MeanOut",
"Share memory with Mean. "
"Store the global mean when training")
.Reuse("Mean");
AddOutput("VarianceOut",
"Share memory with Variance. "
"Store the global Variance when training")
.Reuse("Variance");
AddOutput("SavedMean",
"Mean of the current mini batch, "
"will apply to output when training")
.AsIntermediate();
AddOutput("SavedVariance",
"Variance of the current mini batch, "
"will apply to output when training")
.AsIntermediate();
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<bool>("fuse_with_relu",
"(bool, default false) Only used in mkldnn kernel")
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
.SetDefault(false);
AddComment(R"DOC(
Batch Normalization.
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
)DOC");
}
};
template <typename T>
class BatchNormKernel<platform::CPUDeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const float epsilon = ctx.Attr<float>("epsilon");
const float momentum = ctx.Attr<float>("momentum");
const bool is_test = ctx.Attr<bool>("is_test");
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
const auto *x = ctx.Input<Tensor>("X");
const auto &x_dims = x->dims();
PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
"The Input dim size should be between 2 and 5");
const int N = x_dims[0];
const int C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
const int sample_size = x->numel() / N / C;
auto *y = ctx.Output<Tensor>("Y");
auto *mean_out = ctx.Output<Tensor>("MeanOut");
auto *variance_out = ctx.Output<Tensor>("VarianceOut");
auto *saved_mean = ctx.Output<Tensor>("SavedMean");
auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
// alloc memory
y->mutable_data<T>(ctx.GetPlace());
mean_out->mutable_data<T>(ctx.GetPlace());
variance_out->mutable_data<T>(ctx.GetPlace());
saved_mean->mutable_data<T>(ctx.GetPlace());
saved_variance->mutable_data<T>(ctx.GetPlace());
if (!is_test) {
// saved_xx is use just in this batch of data
EigenVectorArrayMap<T> saved_mean_e(
saved_mean->mutable_data<T>(ctx.GetPlace()), C);
EigenVectorArrayMap<T> saved_variance_e(
saved_variance->mutable_data<T>(ctx.GetPlace()), C);
saved_mean_e.setZero();
saved_variance_e.setZero();
EigenVectorArrayMap<T> running_mean_arr(
mean_out->mutable_data<T>(ctx.GetPlace()), C);
EigenVectorArrayMap<T> running_var_arr(
variance_out->mutable_data<T>(ctx.GetPlace()), C);
if ((N * sample_size) == 1) {
LOG(WARNING) << "Only 1 element in normalization dimension, "
<< "we skip the batch norm calculation, let y = x.";
framework::TensorCopySync(*x, ctx.GetPlace(), y);
return;
}
switch (data_layout) {
case DataLayout::kNCHW: {
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
for (int nc = 0; nc < N * C; ++nc) {
saved_mean_e(nc % C) += x_arr.col(nc).sum();
}
saved_mean_e /= N * sample_size;
for (int nc = 0; nc < N * C; ++nc) {
saved_variance_e(nc % C) +=
(x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
}
saved_variance_e /= N * sample_size;
break;
}
case DataLayout::kNHWC: {
ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
for (int i = 0; i < N * sample_size; ++i) {
saved_mean_e += x_arr.col(i);
}
saved_mean_e /= N * sample_size;
for (int i = 0; i < N * sample_size; ++i) {
saved_variance_e +=
(x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
}
saved_variance_e /= N * sample_size;
break;
}
default:
PADDLE_THROW("Unknown storage order: %s", data_layout_str);
}
running_mean_arr =
running_mean_arr * momentum + saved_mean_e * (1. - momentum);
running_var_arr =
running_var_arr * momentum + saved_variance_e * (1. - momentum);
}
// use SavedMean and SavedVariance to do normalize
Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
if (is_test) {
ConstEigenVectorArrayMap<T> var_arr(
ctx.Input<Tensor>("Variance")->data<T>(), C);
inv_std = (var_arr + epsilon).sqrt().inverse();
} else {
EigenVectorArrayMap<T> saved_inv_std(
ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
// inverse SavedVariance first, gradient will use it too.
saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
inv_std = saved_inv_std;
}
ConstEigenVectorArrayMap<T> mean_arr(
is_test ? ctx.Input<Tensor>("Mean")->data<T>()
: ctx.Output<Tensor>("SavedMean")->data<T>(),
C);
// ((x - est_mean) * (inv_var) * scale + bias
// formula transform ====>
// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *bias = ctx.Input<Tensor>("Bias");
ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
bias_arr - mean_arr * inv_std * scale_arr;
switch (data_layout) {
case DataLayout::kNCHW: {
EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
N * C);
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
for (int nc = 0; nc < N * C; ++nc) {
y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
}
break;
}
case DataLayout::kNHWC: {
EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
N * sample_size) =
(ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
new_scale)
.colwise() +
new_bias;
break;
}
default:
PADDLE_THROW("Unknown storage order: %d", data_layout);
}
}
};
class BatchNormGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
// check input
PADDLE_ENFORCE(ctx->HasInput("X"));
PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");
PADDLE_ENFORCE(ctx->HasInput("SavedMean"), "");
PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), "");
// check output
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), "");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), "");
const auto x_dims = ctx->GetInputDim("X");
const DataLayout data_layout = framework::StringToDataLayout(
ctx->Attrs().Get<std::string>("data_layout"));
const int C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
const auto *var = ctx.InputVar(framework::GradVarName("Y"));
if (var == nullptr) {
PADDLE_THROW("can't find Y@GRAD");
}
const Tensor *t = nullptr;
if (var->IsType<Tensor>()) {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
}
if (t == nullptr) {
PADDLE_THROW("can't find Y@GRAD");
}
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::LibraryType library = framework::LibraryType::kPlain;
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
layout = framework::DataLayout::kMKLDNN;
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
}
#endif
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout, library);
}
};
template <typename T>
class BatchNormGradKernel<platform::CPUDeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const auto *x = ctx.Input<Tensor>("X");
const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
// SavedVariance have been reverted in forward operator
const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
// Get the size for each dimension.
// NCHW [batch_size, in_channels, in_height, in_width]
const auto &x_dims = x->dims();
PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
"The Input dim size should be between 2 and 5");
const int N = x_dims[0];
const int C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
const int sample_size = x->numel() / N / C;
ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
ConstEigenVectorArrayMap<T> mean_arr(saved_mean->data<T>(), C);
ConstEigenVectorArrayMap<T> inv_var_arr(saved_inv_variance->data<T>(), C);
// init output
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
d_x->mutable_data<T>(ctx.GetPlace());
d_scale->mutable_data<T>(ctx.GetPlace());
d_bias->mutable_data<T>(ctx.GetPlace());
// d_bias = np.sum(d_y, axis=0)
// d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
// d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
// - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
EigenVectorArrayMap<T> d_bias_arr(d_bias->mutable_data<T>(ctx.GetPlace()),
C);
EigenVectorArrayMap<T> d_scale_arr(d_scale->mutable_data<T>(ctx.GetPlace()),
C);
d_bias_arr.setZero();
d_scale_arr.setZero();
if ((N * sample_size) == 1) {
framework::TensorCopySync(*d_y, ctx.GetPlace(), d_x);
return;
}
const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size);
switch (data_layout) {
case DataLayout::kNCHW: {
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
sample_size, N * C);
d_x_arr.setZero();
for (int nc = 0; nc < N * C; ++nc) {
int c = nc % C;
d_bias_arr(c) += d_y_arr.col(nc).sum();
d_scale_arr(c) +=
((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
.sum();
}
for (int nc = 0; nc < N * C; ++nc) {
int c = nc % C;
d_x_arr.col(nc) +=
scale_inv_var_nhw(c) *
(d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
(x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c));
}
break;
}
case DataLayout::kNHWC: {
ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
N * sample_size);
d_x_arr.setZero();
const auto d_y_row_sum = d_y_arr.rowwise().sum();
const auto x_minus_mean = x_arr.colwise() - mean_arr;
const auto d_y_mul_x_minus_mean_row_sum =
(d_y_arr * x_minus_mean).rowwise().sum();
const auto inv_var_sqr = inv_var_arr * inv_var_arr;
for (int nhw = 0; nhw < N * sample_size; ++nhw) {
d_bias_arr += d_y_arr.col(nhw);
d_scale_arr +=
(x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
d_x_arr.col(nhw) +=
scale_inv_var_nhw *
(d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
x_minus_mean.col(nhw) * inv_var_sqr *
d_y_mul_x_minus_mean_row_sum);
}
break;
}
default:
PADDLE_THROW("Unknown storage order: %s", data_layout_str);
}
}
};
class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto *op = new framework::OpDesc();
op->SetType("batch_norm_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetInput("Scale", Input("Scale"));
MKLDNN implementation of batch normalization (#9904) * Initial implementation of forward pass for MKLDNN batch norm * Added attributes for MKLDNN batch norm * MKLDNN batch norm forward pass passes unittest. Started working on backward * Backward pass for MKLDNN batch norm added * MKLDNN batch norm: scoring added to forward pass * MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up * MKLDNN batch norm: python unit tests added; mkldnn tests removed * MKLDNN batch norm: changes required by cpplint * MKLDNN batch norm: refactoring the operator * MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests * MKLDNN batch norm: refctoring, function for static/const cast to void* added * MKLDNN batch norm: remove AnyLayout from batch norm * MKLDNN batch norm: only NCHW format is supported. Unittests refactored * MKDNN batch norm: use_mkldnn added to attributes * MKLDNN batch norm: AnyLayout removed from unittest * MKLDNN batch norm: added CUDNN defines to batch norm * MKLDNN batch norm: undefined data_format variable corrected * MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes * MKLDNN batch norm: added use_cudnn attribute to batch norm operator * MKLDNN batch norm: correcting batch norm unit tests for MKLDNN * MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted * Change default layout to NCHW * MKLDNN batch norm: init_kernel_type method added to unit tests * MKLDNN batch norm: style changes * MKLDNN batch norm: unit tests refactored * MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
7 years ago
op->SetInput("Bias", Input("Bias"));
op->SetInput("SavedMean", Output("SavedMean"));
op->SetInput("SavedVariance", Output("SavedVariance"));
op->SetAttrMap(Attrs());
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
return std::unique_ptr<framework::OpDesc>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
ops::BatchNormGradMaker);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
REGISTER_OP_CPU_KERNEL(
batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
batch_norm_grad,
ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);