You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/conv_shift_op.cc

250 lines
9.0 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_shift_op.h"
#include <memory>
#include "paddle/fluid/framework/eigen.h"
namespace paddle {
namespace operators {
using framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
class ConvShiftOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ConvShiftOp");
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ConvShiftOp");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ConvShiftOp");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(
x_dims.size(), 2,
platform::errors::InvalidArgument(
"Input(X)'s dimensions of ConvShiftOp should be 2. "
"But received X's shape = [%s] and the dimension is %d.",
x_dims, x_dims.size()));
PADDLE_ENFORCE_EQ(
y_dims.size(), 2,
platform::errors::InvalidArgument(
"Input(Y)'s dimensions of ConvShiftOp should be 2. "
"But received Y's shape = [%s] and the dimension is %d.",
y_dims, y_dims.size()));
if (ctx->IsRuntime() || (x_dims[0] > 0 && y_dims[0] > 0))
PADDLE_ENFORCE_EQ(
x_dims[0], y_dims[0],
platform::errors::InvalidArgument(
"The first dimension of Input(X) and Input(Y) of ConvShiftOp "
"should be equal. "
"But received X's shape = [%s], Y's shape = [%s], "
"and the first dimensions are %d and %d respectively.",
x_dims, y_dims, x_dims[0], y_dims[0]));
if (ctx->IsRuntime() || y_dims[1] > 0)
PADDLE_ENFORCE_EQ(
y_dims[1] % 2, 1,
platform::errors::InvalidArgument(
"The second dimension of Input(Y) of ConvShiftOp should be odd."
"But received Y's shape = [%s] and the second dimension is %d.",
y_dims, y_dims[1]));
if (ctx->IsRuntime() || (x_dims[1] > 0 && y_dims[1] > 0))
PADDLE_ENFORCE_LE(
y_dims[1], x_dims[1],
platform::errors::InvalidArgument(
"The second dimension of Input(Y) of ConvShiftOp should be less "
"than or equal to the 2nd dimension of Input(X)."
"But received X's shape = [%s], Y's shape = [%s], "
"and the second dimensions are %d and %d respectively.",
x_dims, y_dims, x_dims[1], y_dims[1]));
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class ConvShiftGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ConvShiftGradOp");
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ConvShiftGradOp");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@GRAD", "ConvShiftGradOp");
auto x_grad_name = framework::GradVarName("X");
if (ctx->HasOutput(x_grad_name)) {
auto x_dims = ctx->GetInputDim("X");
ctx->SetOutputDim(x_grad_name, x_dims);
}
auto y_grad_name = framework::GradVarName("Y");
if (ctx->HasOutput(y_grad_name)) {
auto y_dims = ctx->GetInputDim("Y");
ctx->SetOutputDim(y_grad_name, y_dims);
}
}
};
class ConvShiftOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), a 2-D tensor with shape B x M, "
"where B is the batch size and M is the data dimension.");
AddInput("Y",
"(Tensor, default Tensor<float>), a 2-D tensor with shape B x N, "
"where B is the batch size and N is the data dimension. N must "
"be odd.");
AddOutput("Out",
"(Tensor, default Tensor<float>), a 2-D tensor with shape B x M, "
"i.e., the same shape as X.");
AddComment(R"DOC(
ConvShift Operator.
A layer for circular convolution of two vectors,
as used in the Neural Turing Machine: https://arxiv.org/abs/1410.5401
The equation is:
$$Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j}$$
where X's index is computed modulo M, and Y's index is computed modulo N.
Both inputs X and Y can carry LoD (Level of Details) information.
However, the output only shares the LoD information with input X.
)DOC");
}
};
template <typename T>
class ConvShiftKernel<platform::CPUPlace, T> : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *X = context.Input<Tensor>("X");
auto *Y = context.Input<Tensor>("Y");
auto *Out = context.Output<Tensor>("Out");
Out->mutable_data<T>(context.GetPlace());
auto x = EigenMatrix<T>::From(*X);
auto y = EigenMatrix<T>::From(*Y);
auto out = EigenMatrix<T>::From(*Out);
out.setZero();
size_t batch_size = X->dims()[0];
size_t x_width = X->dims()[1];
size_t y_width = Y->dims()[1];
size_t y_half_width = (y_width - 1) / 2;
for (size_t k = 0; k < batch_size; ++k) {
for (size_t i = 0; i < x_width; ++i) {
for (size_t j = 0; j < y_width; ++j) {
int index = (i + j - y_half_width + x_width) % x_width;
out(k, i) += x(k, index) * y(k, j);
}
}
}
}
};
template <typename T>
class ConvShiftGradKernel<platform::CPUPlace, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *X = context.Input<Tensor>("X");
auto *Y = context.Input<Tensor>("Y");
auto *dOut = context.Input<Tensor>(framework::GradVarName("Out"));
auto *dX = context.Output<Tensor>(framework::GradVarName("X"));
auto *dY = context.Output<Tensor>(framework::GradVarName("Y"));
auto x = EigenMatrix<T>::From(*X);
auto y = EigenMatrix<T>::From(*Y);
auto dout = EigenMatrix<T>::From(*dOut);
auto x_dims = X->dims();
auto y_dims = Y->dims();
size_t batch_size = x_dims[0];
size_t x_width = x_dims[1];
size_t y_width = y_dims[1];
size_t y_half_width = (y_width - 1) / 2;
// The below trades code duplication for efficiency (keeping the if
// statement outside of the loop).
if (dX) {
dX->mutable_data<T>(context.GetPlace());
auto dx = EigenMatrix<T>::From(*dX);
dx.setZero();
for (size_t k = 0; k < batch_size; ++k) {
for (size_t i = 0; i < x_width; ++i) {
for (size_t j = 0; j < y_width; ++j) {
int index = (i + j - y_half_width + x_width) % x_width;
dx(k, index) += dout(k, i) * y(k, j);
}
}
}
}
if (dY) {
dY->mutable_data<T>(context.GetPlace());
auto dy = EigenMatrix<T>::From(*dY);
dy.setZero();
for (size_t k = 0; k < batch_size; ++k) {
for (size_t i = 0; i < x_width; ++i) {
for (size_t j = 0; j < y_width; ++j) {
int index = (i + j - y_half_width + x_width) % x_width;
dy(k, j) += x(k, index) * dout(k, i);
}
}
}
}
}
};
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
template <typename T>
class ConvShiftGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("conv_shift_grad");
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
op->SetInput("X", this->Input("X"));
op->SetInput("Y", this->Input("Y"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(conv_shift, ops::ConvShiftOp, ops::ConvShiftOpMaker,
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
ops::ConvShiftGradOpMaker<paddle::framework::OpDesc>,
ops::ConvShiftGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv_shift_grad, ops::ConvShiftGradOp);
REGISTER_OP_CPU_KERNEL(conv_shift,
ops::ConvShiftKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv_shift_grad,
ops::ConvShiftGradKernel<paddle::platform::CPUPlace, float>);