You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/meta_optimizers/graph_execution_optimizer.py

208 lines
8.9 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import paddle
from paddle.fluid.framework import core
from paddle.fluid import compiler
from .meta_optimizer_base import MetaOptimizerBase
from ..base.private_helper_function import wait_server_ready
import logging
class GraphExecutionOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(GraphExecutionOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = []
def _is_graph_out(self):
return True
def _can_apply(self):
"""
Basically, this is PE, and almost all programs can be executed here
"""
if not self.role_maker._is_collective:
# update me. currently, if parameter server is used
# graph execution optimizer can not be applied
return False
return True
def backward(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None):
pass
# should fix the variable
def _setup_nccl_op(self, startup_program, main_program, build_strategy):
trainer_endpoints = self.role_maker.get_trainer_endpoints()
trainers = trainer_endpoints
trainer_id = self.role_maker.worker_index()
current_endpoint = self.role_maker.get_trainer_endpoints()[trainer_id]
trainer_endpoints_env = ",".join(trainer_endpoints)
trainers_num = self.role_maker.worker_num()
nccl_id_var = startup_program.global_block().create_var(
name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
for i in range(1, build_strategy.nccl_comm_num):
startup_program.global_block().create_var(
name="NCCLID_{}".format(i),
persistable=True,
type=core.VarDesc.VarType.RAW)
if build_strategy.use_hierarchical_allreduce:
for i in range(0, build_strategy.nccl_comm_num):
startup_program.global_block().create_var(
name="Hierarchical_inter_NCCLID_{}".format(i),
persistable=True,
type=core.VarDesc.VarType.RAW)
startup_program.global_block().create_var(
name="Hierarchical_exter_NCCLID_{}".format(i),
persistable=True,
type=core.VarDesc.VarType.RAW)
startup_program.global_block().append_op(
type="gen_nccl_id",
inputs={},
outputs={"NCCLID": nccl_id_var},
attrs={
"trainers": trainer_endpoints,
"trainer_id": trainer_id,
"nccl_comm_num": build_strategy.nccl_comm_num,
"use_hierarchical_allreduce":
build_strategy.use_hierarchical_allreduce,
"hierarchical_allreduce_inter_ranks":
build_strategy.hierarchical_allreduce_inter_nranks
})
def _try_to_compile(self, startup_program, main_program, loss):
import copy
dist_strategy = self.user_defined_strategy
local_build_strategy = paddle.fluid.BuildStrategy()
local_build_strategy.enable_sequential_execution = \
dist_strategy.build_strategy.enable_sequential_execution
local_build_strategy.fuse_elewise_add_act_ops = \
dist_strategy.build_strategy.fuse_elewise_add_act_ops
local_build_strategy.fuse_bn_act_ops = \
dist_strategy.build_strategy.fuse_bn_act_ops
local_build_strategy.enable_auto_fusion = \
dist_strategy.build_strategy.enable_auto_fusion
local_build_strategy.fuse_relu_depthwise_conv = \
dist_strategy.build_strategy.fuse_relu_depthwise_conv
local_build_strategy.fuse_broadcast_ops = \
dist_strategy.build_strategy.fuse_broadcast_ops
local_build_strategy.fuse_all_optimizer_ops = \
dist_strategy.build_strategy.fuse_all_optimizer_ops
local_build_strategy.enable_inplace = \
dist_strategy.build_strategy.enable_inplace
local_build_strategy.use_hierarchical_allreduce = \
dist_strategy.use_hierarchical_allreduce
local_build_strategy.hierarchical_allreduce_inter_nranks = \
dist_strategy.hierarchical_allreduce_inter_nranks
local_build_strategy.sync_batch_norm = \
dist_strategy.sync_batch_norm
local_build_strategy.fuse_all_reduce_ops = \
dist_strategy.fuse_all_reduce_ops
local_build_strategy.nccl_comm_num = \
dist_strategy.nccl_comm_num
if self.user_defined_strategy.recompute == True:
logging.warn(
"set enable_sequential_execution=True since you have enable the recompute strategy"
)
local_build_strategy.enable_sequential_execution = True
exe_strategy = self.user_defined_strategy.execution_strategy
worker_num = self.role_maker.worker_num()
node_num = self.role_maker.node_num()
if self.role_maker._is_collective:
assert worker_num >= 1, "nccl2 worker_num must >= 1, now:{}" % worker_num
if worker_num <= 1:
# local mode
if local_build_strategy.nccl_comm_num > 1:
logging.warn("set nccl_comm_num=1 since you only have 1 node.")
local_build_strategy.nccl_comm_num = 1
if node_num <= 1:
if local_build_strategy.use_hierarchical_allreduce:
logging.warn(
"set hierachical_allreduce=False since you only have 1 node."
)
local_build_strategy.use_hierarchical_allreduce = False
sync_allreduce = dist_strategy.sync_nccl_allreduce
if sync_allreduce:
paddle.fluid.framework.set_flags({
"FLAGS_sync_nccl_allreduce": True
})
exe_strategy.num_threads = local_build_strategy.nccl_comm_num + 1
if local_build_strategy.use_hierarchical_allreduce:
exe_strategy.num_threads = 2 * local_build_strategy.nccl_comm_num + 1
if exe_strategy.num_threads > 4:
logging.warn(
"if you use hierachical_allreduce or "
"with multi nccl comm, please set distributed_strategy.sync_nccl_allreduce=False"
)
sync_batch_norm = local_build_strategy.sync_batch_norm
if sync_batch_norm:
local_build_strategy.nccl_comm_num = 1
local_build_strategy.use_hierarchical_allreduce = False
exe_strategy.num_threads = 1
logging.warn(
"use sync_batch_norm will hang when set num_threads > 1, so "
"set num_threads=1, nccl_comm_num=1, hierachical_allreduce=False."
)
# TODO(guru4elephant): should be an independent optimizer
self._setup_nccl_op(startup_program, main_program, local_build_strategy)
local_build_strategy.num_trainers = self.role_maker.worker_num()
local_build_strategy.trainer_id = self.role_maker.worker_index()
local_build_strategy.trainers_endpoints = self.role_maker.get_trainer_endpoints(
)
local_build_strategy.enable_backward_optimizer_op_deps = True
self._compiled_program = compiler.CompiledProgram(main_program)
self._compiled_program.with_data_parallel(
loss_name=loss.name,
build_strategy=local_build_strategy,
exec_strategy=exe_strategy,
share_vars_from=None)
return self._compiled_program
def _disable_strategy(self, dist_strategy):
# TODO(guru4elephant): should close all PE related flags here
pass
def minimize(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
if startup_program == None:
startup_program = paddle.static.default_startup_program()
compiled_program = self._try_to_compile(startup_program,
loss.block.program, loss)
loss.block.program._graph = compiled_program
# just return self.optimizer_ops and self.param_grads
return None, None