You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/linear_chain_crf_op.cc

327 lines
14 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/linear_chain_crf_op.h"
#include <memory>
namespace paddle {
namespace operators {
7 years ago
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Emission",
"(LoDTensor/Tensor<float>). When a LoDTensor input,A 2-D LoDTensor"
" with shape [N x D], where N is the size of the "
"mini-batch and D is the total tag number. The unscaled emission "
"weight matrix for the linear chain CRF. When a Tensor input,"
"A Tensor with shape [N x S x D], where N is batch number,"
"S is max length of sequences, D is the total tag number."
"A LoDTensor or Tensor with type float32, float64.");
AddInput("Transition",
"(Tensor, default Tensor<float>) A 2-D Tensor with shape "
"[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
"operator. See more details in the operator's comments.");
AddInput("Label",
"(LoDTensor/Tensor<int64_t>), when a LoDTensor input, "
"[N x 1], where N is the total element number in a mini-batch. "
"when a Tensor input, [N x S], where N is batch number. "
"S is max length of sequences. The ground truth."
"A LoDTensor or Tensor with int64.");
AddInput("Length",
"(Tensor, default Tensor<int64_t>) A Tensor with shape "
"[M x 1], where M is the sequence number in a mini-batch."
"A Tensor with type int64.")
.AsDispensable();
AddOutput(
"Alpha",
"(Tensor, default Tensor<float>), the same shape with Emission. "
"The forward vectors for the entire batch. Denote it as $\alpha$. "
"$\alpha$ is a memo table used to calculate the normalization "
"factor in CRF. $\alpha[k, v]$ stores the unnormalized "
"probabilites of all possible unfinished sequences of tags that end at "
"position $k$ with tag $v$. For each $k$, "
"$\alpha[k, v]$ is a vector of length $D$ with a component for "
"each tag value $v$. This vector is called a forward vecotr and "
"will also be used in backward computations.")
.AsIntermediate();
AddOutput(
"EmissionExps",
"(Tensor, default Tensor<float>), the same shape with Emission. "
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused in "
"backward computation."
"A LoDTensor or Tensor with type float32, float64.")
.AsIntermediate();
AddOutput(
"TransitionExps",
"(Tensor, default Tensor<float>) A 2-D Tensor with shape "
"[(D + 2) x D]. The exponentials of Input(Transition). This is an "
"intermediate computational result in forward computation, and "
"will be reused in backward computation."
"A LoDTensor or Tensor with type float32, float64.")
.AsIntermediate();
AddOutput(
"LogLikelihood",
"(Tensor, default Tensor<float>) The logarithm of the conditional "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"tensor with shape [S x 1], where S is the sequence number in a "
7 years ago
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"A Tensor with type float32, float64.");
AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
7 years ago
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
7 years ago
This operator implements the Forward-Backward algorithm for the linear chain
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
Equation:
7 years ago
1. Denote Input(Emission) to this operator as $x$ here.
2. The first D values of Input(Transition) to this operator are for starting
weights, denoted as $a$ here.
3. The next D values of Input(Transition) of this operator are for ending
weights, denoted as $b$ here.
4. The remaning values of Input(Transition) are for transition weights,
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
+ \sum_{l=1}^L x_{s_l}
+ \sum_{l=2}^L w_{s_{l-1},s_l})$$
where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
to the linear chain CRF.
Finally, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.
NOTE:
7 years ago
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.
7 years ago
2. Because this operator performs global normalization over all possible
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
)DOC");
}
};
7 years ago
class LinearChainCRFOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Emission"),
"Input(Emission) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Transition"),
"Input(Transition) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
"Output(Alpha) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
"Output(EmissionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
"Output(TransitionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
"Output(LogLikelihood) should be not null.");
auto transition_dims = ctx->GetInputDim("Transition");
PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
"The Input(Transition) should be a 2-D tensor.");
bool check = true;
if ((!ctx->IsRuntime()) &&
(transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(
transition_dims[0] - 2, transition_dims[1],
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [(D + 2) x D].");
}
auto emission_dims = ctx->GetInputDim("Emission");
PADDLE_ENFORCE_NE(emission_dims[0], 0,
"An empty mini-batch is not allowed.");
if (ctx->HasInput("Length")) {
PADDLE_ENFORCE_EQ(emission_dims.size(), 3,
"The Input(Emission) should be a 3-D tensor.");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(
(label_dims.size() == 3UL && label_dims[2] == 1) ||
(label_dims.size() == 2UL),
true,
"The Input(Label) should be a 3-D tensor with last "
"dimension fixed to 1 or a 2-D tensor in padding mode.");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(emission_dims[0], label_dims[0],
"The batch size of Input(Emission) and Input(Label) "
"should be the same.");
PADDLE_ENFORCE_EQ(emission_dims[1], label_dims[1],
"The max length of Input(Emission) and Input(Label) "
"should be the same.");
}
} else {
PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
"The Input(Emission) should be a 2-D tensor.");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(emission_dims[1], transition_dims[1],
"The 2nd dimension of the Input(Emission) and the "
"Input(Transition) "
"should be equal to the tag number.");
}
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(label_dims.size(), 2,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1.");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(
emission_dims[0], label_dims[0],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same.");
}
}
ctx->SetOutputDim("Alpha", emission_dims);
ctx->SetOutputDim("EmissionExps", emission_dims);
ctx->SetOutputDim("TransitionExps", transition_dims);
7 years ago
// TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
// is the sequence number in a mini-batch. The dimension set here should be
7 years ago
// resized to its correct size in the function Compute. Fix this once we can
// get LoD information in the InferShape interface.
ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
}
protected:
// Explicitly set that the data type of computation kernel of linear_chain_crf
// is determined by its input "Emission".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Emission"),
platform::CPUPlace());
}
};
7 years ago
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
"Input(EmissionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
"Input(TransitionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
"Input(LogLikelihood@GRAD) shoudl be not null.");
auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
7 years ago
if (ctx->HasOutput(framework::GradVarName("Emission"))) {
ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
if (ctx->HasInput("Length") == false) {
ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
}
7 years ago
}
7 years ago
if (ctx->HasOutput(framework::GradVarName("Transition"))) {
ctx->SetOutputDim(framework::GradVarName("Transition"),
transition_exps_dims);
ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
7 years ago
}
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf_grad
7 years ago
// operator is determined by its input: gradients of LogLikelihood.
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("LogLikelihood")),
platform::CPUPlace());
}
};
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
template <typename T>
class LinearChainCRFGradMaker : public framework::SingleGradOpMaker<T> {
public:
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("linear_chain_crf_grad");
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
op->SetAttrMap(this->Attrs());
op->SetInput("Emission", this->Input("Emission"));
op->SetInput("Transition", this->Input("Transition"));
op->SetInput("Label", this->Input("Label"));
op->SetInput("Alpha", this->Output("Alpha"));
op->SetInput("EmissionExps", this->Output("EmissionExps"));
op->SetInput("TransitionExps", this->Output("TransitionExps"));
if (this->HasInput("Length")) {
op->SetInput("Length", this->Input("Length"));
}
op->SetInput(framework::GradVarName("LogLikelihood"),
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
this->OutputGrad("LogLikelihood"));
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
op->SetOutput(framework::GradVarName("Emission"),
this->InputGrad("Emission"));
op->SetOutput(framework::GradVarName("Transition"),
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
this->InputGrad("Transition"));
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LinearChainCRFGradNoNeedBufferVarsInference,
"Transition", "Emission");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
ops::LinearChainCRFOpMaker,
ops::LinearChainCRFGradMaker<paddle::framework::OpDesc>,
ops::LinearChainCRFGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
ops::LinearChainCRFGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(
linear_chain_crf,
ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
linear_chain_crf_grad,
ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
double>);