You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/platform/device_context.h

454 lines
14 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <future> // NOLINT
#include <memory>
#include <mutex> // NOLINT
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/temporary_allocator.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_helper.h"
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#if !defined(__APPLE__) && !defined(_WIN32)
#include "paddle/fluid/platform/dynload/nccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "mkldnn.hpp"
#endif
#include <map>
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace platform {
/*! \brief device temporary allocator singleton.
*
* Some operator needs temporary memory during computation, for example,
* conv_gemm, which needs use col to store the result of im2col. If we
* create a stack memory which is used by CUDA Kernel, before the
* Computation(...) returns, we should add ctx->Wait(), because the
* execution of CUDA is async, if there doesn't have ctx->Wait(),
* the temporary memory will be released before the CUDA Kernel uses
* it.
*
* DeviceTemporaryAllocator is a singleton, which contains a
* `TemporaryAllocator` for each <Place, Stream>. And the TemporaryAllocator
* contains a temp_allocation_queue which is used to store the temporary
* allocations. The allocation, which is allocated by TemporaryAllocator,
* is a unique_ptr, and when it is not held by any variable, it will be
* pushed into the temp_allocation_queue. There are two opportunities to free
* the allocations of temp_allocation_queue:
* - when the Stream calls cudaStreamSynchronize;
* - when the allocation size of opportunities exceeds a certain threshold
* (defined by FLAGS_limit_of_tmp_allocation).
*
* */
class DeviceTemporaryAllocator {
public:
static DeviceTemporaryAllocator& Instance() {
PADDLE_ENFORCE_NOT_NULL(allocators,
"Need to Create DeviceTemporaryAllocator first!");
return *allocators;
}
static DeviceTemporaryAllocator& Init() {
if (allocators == nullptr) {
allocators = new DeviceTemporaryAllocator();
}
return *allocators;
}
/*! \brief Return handle of single temporary allocator. */
#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& Get(const platform::Place& place,
const cudaStream_t& stream);
#endif
template <typename DeviceContext>
platform::TemporaryAllocator& Get(const DeviceContext& dev_ctx);
platform::TemporaryAllocator& Get(const platform::Place& place);
private:
DeviceTemporaryAllocator() : cpu_allocator_(platform::CPUPlace()) {}
static DeviceTemporaryAllocator* allocators;
platform::TemporaryAllocator cpu_allocator_;
#ifdef PADDLE_WITH_CUDA
std::map<std::pair<platform::Place, cudaStream_t>,
std::unique_ptr<platform::TemporaryAllocator>>
device_allocator_;
#endif
std::mutex mtx_;
DISABLE_COPY_AND_ASSIGN(DeviceTemporaryAllocator);
};
class DeviceContext {
public:
virtual ~DeviceContext() {}
virtual Place GetPlace() const = 0;
virtual void Wait() const {}
};
8 years ago
class CPUDeviceContext : public DeviceContext {
public:
CPUDeviceContext();
explicit CPUDeviceContext(CPUPlace place);
Eigen::DefaultDevice* eigen_device() const;
8 years ago
Place GetPlace() const override;
8 years ago
private:
CPUPlace place_;
8 years ago
std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};
template <typename Place>
struct DefaultDeviceContextType;
template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
using TYPE = CPUDeviceContext;
};
#ifdef PADDLE_WITH_CUDA
class EigenCudaStreamDevice;
class CudnnHolder {
public:
CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place);
~CudnnHolder();
cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }
private:
friend class CudnnWorkspaceHandle;
void ReallocateWorkspace(size_t required_workspace_len);
template <typename Callback>
void RunFuncImpl(Callback&& cudnn_func, size_t required_workspace_len) {
if (required_workspace_len > WorkspaceSize()) {
ReallocateWorkspace(required_workspace_len);
}
VLOG(2) << "Cudnn workspace size: "
<< static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
cudnn_func(WorkspacePtr());
}
/*! \brief Reset workspace thus release the memory */
inline void ResetWorkspace() {
if (workspace_) {
// Maybe someone is using the current workspace
PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
workspace_ = nullptr;
}
}
inline void* WorkspacePtr() {
if (workspace_) {
return workspace_->ptr();
} else {
return nullptr;
}
}
inline size_t WorkspaceSize() {
if (workspace_) {
return workspace_->size();
} else {
return 0;
}
}
std::mutex& Mutex() { return mtx_; }
cudnnHandle_t cudnn_handle_;
6 years ago
memory::AllocationPtr workspace_;
const cudaStream_t* stream_; // not owned;
const CUDAPlace place_;
std::mutex mtx_;
};
class CudnnWorkspaceHandle {
public:
/*! \brief The lock would not be acquired when constructor calls.
* The lock would be acquired when RunFunc() is called first time. */
inline explicit CudnnWorkspaceHandle(CudnnHolder* holder) : holder_(holder) {}
/*! \brief Thread which call RunFunc() would acquire the lock first
* before invoking cudnn functions. */
template <typename Callback>
inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_len) {
if (!guard_) {
guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
}
holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
required_workspace_len);
}
/*! \brief Thread which call RunFuncSync() would acquire the lock first
* before invoking cudnn function and release gpu memory after running
* the function. Currently this function is only used when cudnn
* exhaustive searching and callers have to guarantee that the input function
* is host blocking */
template <typename Callback>
inline void RunFuncSync(Callback&& cudnn_func,
size_t required_workspace_len) {
if (!guard_) {
guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
}
holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
required_workspace_len);
holder_->ResetWorkspace();
}
CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;
private:
CudnnHolder* holder_; // not own
std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};
class CUDADeviceContext : public DeviceContext {
public:
explicit CUDADeviceContext(CUDAPlace place);
virtual ~CUDADeviceContext();
/*! \brief Wait for all operations completion in the stream. */
void Wait() const override;
/*! \brief Return place in the device context. */
Place GetPlace() const override;
7 years ago
/*! \brief Return compute capability in the device context. */
7 years ago
int GetComputeCapability() const;
/*! \brief Return the max physical thread count in the device context */
int GetMaxPhysicalThreadCount() const;
/*! \brief Return eigen device in the device context. */
Eigen::GpuDevice* eigen_device() const;
/*! \brief Call cublas function safely. */
template <typename Callback>
inline void CublasCall(Callback&& callback) const {
cublas_handle_->Call(std::forward<Callback>(callback));
}
/*! \brief Check whether tensor core is supported */
bool tensor_core_available() const;
/*! \brief Call cublas function with Tensor Core safely. If
Tensor Core is not available, use DEFAULT_MATH instead. */
template <typename Callback>
inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
if (cublas_tensor_core_handle_) {
cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
} else {
cublas_handle_->Call(std::forward<Callback>(callback));
}
}
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t cudnn_handle() const;
/*! \brief Return a cudnn workspace handle to call multiple cudnn
* functions without interrupting by other threads.
* Once the first cudnn function is called by the handle, a lock
* would be acquired to prevent other threads from accessing the
* workspace. Once the handle is destructed, the lock would be released.
* CudnnWorkspaceHandle is an RAII object to implement thread-safe
* sequential cudnn function calls. */
CudnnWorkspaceHandle cudnn_workspace_handle() const;
8 years ago
/*! \brief Return cuda stream in the device context. */
cudaStream_t stream() const;
#if !defined(_WIN32)
/*! \brief Return nccl communicators. */
ncclComm_t nccl_comm() const { return nccl_comm_; }
/*! \brief Set nccl communicators. */
void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
#endif
template <typename Callback>
void RecordEvent(cudaEvent_t ev, Callback callback) {
callback();
PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
}
template <typename Callback>
void AddStreamCallback(Callback&& callback) const {
callback_manager_->AddCallback(callback);
}
6 years ago
void WaitStreamCallback() const { callback_manager_->Wait(); }
private:
CUDAPlace place_;
mutable std::once_flag init_cudnn_;
8 years ago
std::unique_ptr<Eigen::GpuDevice> eigen_device_;
8 years ago
std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
mutable std::unique_ptr<CudnnHolder> cudnn_holder_;
cudaStream_t stream_;
std::unique_ptr<CublasHandleHolder> cublas_handle_;
std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
#if !defined(_WIN32)
// NCCL communicator (single process version) for NCCL collective operations.
// NCCL collective operations provides fast collectives over multiple GPUs
// both within and across nodes.
// But, this collectives is used for collectives over multiple GPUs within
// nodes.
ncclComm_t nccl_comm_{nullptr};
#endif
int compute_capability_;
int runtime_version_;
int driver_version_;
int multi_process_;
int max_threads_per_mp_;
6 years ago
// StreamCallbackManager is thread-safe
std::unique_ptr<StreamCallbackManager> callback_manager_;
CudnnHolder* cudnn_holder() const;
DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
};
8 years ago
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
7 years ago
using TYPE = CUDADeviceContext;
};
// Currently, CUDAPinnedDeviceContext is only used to data copying.
class CUDAPinnedDeviceContext : public DeviceContext {
public:
CUDAPinnedDeviceContext();
explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);
Place GetPlace() const override;
Eigen::DefaultDevice* eigen_device() const;
private:
CUDAPinnedPlace place_;
std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};
template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
using TYPE = CUDAPinnedDeviceContext;
};
#endif
8 years ago
#ifdef PADDLE_WITH_MKLDNN
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<KeyBlob>>;
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
class MKLDNNDeviceContext : public CPUDeviceContext {
public:
explicit MKLDNNDeviceContext(CPUPlace place);
/* \brief Get the active engine */
const mkldnn::engine& GetEngine() const { return engine_; }
// Remove all entries from the blob map
void ResetBlobMap() const;
// Set data to blob (i.e. name/data pair). Create blob if not existing
void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
// Find a saved blob. Return nullptr if not found
std::shared_ptr<void> GetBlob(const std::string& name) const;
private:
mkldnn::engine engine_;
std::shared_ptr<BlobMap> p_blobmap_;
std::shared_ptr<std::mutex> p_mutex_;
};
#endif
/*! \brief device context pool singleton */
class DeviceContextPool {
public:
explicit DeviceContextPool(const std::vector<platform::Place>& places);
static DeviceContextPool& Instance() {
PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
return *pool;
}
/*! \brief Create should only called by Init function */
static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
if (pool == nullptr) {
pool = new DeviceContextPool(places);
}
return *pool;
}
/*! \brief Return handle of single device context. */
platform::DeviceContext* Get(const platform::Place& place);
template <typename Place>
const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
const Place& place) {
return reinterpret_cast<
const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
}
size_t size() const { return device_contexts_.size(); }
private:
static DeviceContextPool* pool;
std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
device_contexts_;
DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};
} // namespace platform
} // namespace paddle