You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/math_op_patch.py

252 lines
9.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from .. import core
from ..framework import Variable, unique_name
from .layer_function_generator import OpProtoHolder
from ..initializer import force_init_on_cpu
_supported_int_dtype_ = [
core.VarDesc.VarType.UINT8,
core.VarDesc.VarType.INT8,
core.VarDesc.VarType.INT16,
core.VarDesc.VarType.INT32,
core.VarDesc.VarType.INT64,
]
def monkey_patch_variable():
7 years ago
def unique_tmp_name():
return unique_name.generate("tmp")
def safe_get_dtype(var):
try:
dtype = var.dtype
except:
raise ValueError("Cannot get data type from %s", var.name)
return dtype
def current_block(var):
return var.block
def create_new_tmp_var(block, dtype):
tmp_name = unique_tmp_name()
return block.create_var(name=tmp_name, dtype=dtype)
def create_tensor(block, value, dtype, shape):
value = float(value)
var = create_new_tmp_var(block, dtype)
block.append_op(
type="fill_constant",
outputs={'Out': [var]},
attrs={
'dtype': var.dtype,
'shape': shape,
'value': value,
'force_cpu': force_init_on_cpu()
},
stop_gradient=True)
var.stop_gradient = True
return var
7 years ago
def create_scalar(block, value, dtype):
return create_tensor(block, value, dtype, shape=[1])
def create_tensor_with_batchsize(ref_var, value, dtype):
assert isinstance(ref_var, Variable)
value = float(value)
block = current_block(ref_var)
var = create_new_tmp_var(block, dtype)
batch_dim = -1
for i, d in enumerate(ref_var.shape):
if d < 0:
batch_dim = i
break
assert batch_dim != -1
block.append_op(
type='fill_constant_batch_size_like',
outputs={'Out': [var]},
inputs={'Input': [ref_var]},
attrs={
'shape': ref_var.shape,
'value': value,
'input_dim_idx': batch_dim,
'output_dim_idx': batch_dim
},
stop_gradient=True)
var.stop_gradient = True
return var
def astype(self, dtype):
"""
7 years ago
Cast a variable to a specified data type.
NOTE: The variable must be a Tensor
Args:
self(Variable): The source variable
dtype: The target dtype
Returns:
Variable with new dtype
"""
block = current_block(self)
out = create_new_tmp_var(block, dtype)
block.append_op(
type="cast",
inputs={"X": [self]},
outputs={"Out": [out]},
attrs={"in_dtype": self.dtype,
"out_dtype": out.dtype})
return out
def _scalar_elementwise_op_(var, scale, bias):
block = current_block(var)
out = create_new_tmp_var(block, var.dtype)
block.append_op(
type="scale",
inputs={"X": [var]},
outputs={"Out": [out]},
attrs={"scale": scale,
"bias": bias})
return out
def _scalar_elementwise_add_(var, value):
return _scalar_elementwise_op_(var, 1.0, value)
def _scalar_elementwise_sub_(var, value):
return _scalar_elementwise_op_(var, 1.0, -value)
def _scalar_elementwise_rsub_(var, value):
return _scalar_elementwise_op_(var, -1.0, value)
def _scalar_elementwise_mul_(var, value):
return _scalar_elementwise_op_(var, value, 0.0)
def _scalar_elementwise_div_(var, value):
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
def _elemwise_method_creator_(method_name,
op_type,
reverse=False,
scalar_method=None):
def __impl__(self, other_var):
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
# which may lose accuracy. This is a hot fix for release 1.6.
if scalar_method is not None and not (
op_type == 'elementwise_div' and
self.dtype in _supported_int_dtype_):
if isinstance(other_var, float):
if self.dtype in _supported_int_dtype_:
assert other_var == int(other_var), \
"float value {} cannot convert to integer".format(other_var)
return scalar_method(self, other_var)
elif isinstance(other_var, int):
return scalar_method(self, float(other_var))
lhs_dtype = safe_get_dtype(self)
if not isinstance(other_var, Variable):
if reverse:
has_batch_size = False
for elem in self.shape:
if elem < 0:
has_batch_size = True
break
if not has_batch_size:
other_var = create_tensor(
current_block(self),
other_var,
dtype=lhs_dtype,
shape=self.shape)
else:
other_var = create_tensor_with_batchsize(
self, other_var, lhs_dtype)
else:
# add fill_op to current_block
other_var = create_scalar(
current_block(self), value=other_var, dtype=lhs_dtype)
rhs_dtype = safe_get_dtype(other_var)
if lhs_dtype != rhs_dtype:
other_var = astype(other_var, lhs_dtype)
if reverse:
tmp = self
self = other_var
other_var = tmp
out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)
axis = -1
if other_var.shape[0] == -1:
axis = 0
assert len(self.shape) >= len(other_var.shape), (
"The rank of the first argument of an binary operator cannot "
"be smaller than the rank of its second argument: %s vs %s" %
(len(self.shape), len(other_var.shape)))
current_block(self).append_op(
type=op_type,
inputs={'X': [self],
'Y': [other_var]},
outputs={'Out': out},
attrs={'axis': axis})
return out
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
__impl__.__doc__ = """
{0}
Args:
self(Variable): left hand variable
other_var(Variable|float|int): right hand variable
Returns:
Variable
""".format(comment)
__impl__.__name__ = method_name
return __impl__
# inject methods
for method_name, op_type, reverse, scalar_method in (
("__add__", "elementwise_add", False, _scalar_elementwise_add_),
# a+b == b+a. Do not need to reverse explicitly
("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
# a*b == b*a. Do not need to reverse explicitly
("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
("__div__", "elementwise_div", False, _scalar_elementwise_div_),
("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
("__rdiv__", "elementwise_div", True, None),
("__rtruediv__", "elementwise_div", True, None),
("__pow__", "elementwise_pow", False, None),
("__rpow__", "elementwise_pow", True, None),
("__floordiv__", "elementwise_floordiv", False, None),
("__mod__", "elementwise_mod", False, None),
# for logical compare
("__eq__", "equal", False, None),
("__ne__", "not_equal", False, None),
("__lt__", "less_than", False, None),
("__le__", "less_equal", False, None),
("__gt__", "greater_than", False, None),
("__ge__", "greater_equal", False, None)):
setattr(Variable, method_name,
_elemwise_method_creator_(method_name, op_type, reverse,
scalar_method))
Variable.astype = astype