You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/pad_op.cc

107 lines
3.4 KiB

8 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/pad_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class PadOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dim0 = ctx.Input<Tensor>("X")->dims();
auto paddings = GetAttr<std::vector<int>>("paddings");
8 years ago
PADDLE_ENFORCE_EQ(
dim0.size(), (int)(paddings.size() / 2),
8 years ago
"Paddings size should be equal to dimension size of input tensor.");
8 years ago
std::vector<int> dim1(dim0.size());
8 years ago
for (int i = 0; i < dim0.size(); ++i) {
dim1[i] = dim0[i] + paddings[i * 2] + paddings[i * 2 + 1];
8 years ago
}
8 years ago
ctx.Output<Tensor>("Out")->Resize(paddle::framework::make_ddim(dim1));
8 years ago
}
};
8 years ago
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
8 years ago
public:
8 years ago
PadOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
8 years ago
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of pad op.");
AddOutput("Out", "The output of pad op.");
8 years ago
AddComment(R"DOC(
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:
Given:
X = [[1, 2],
[3, 4]]
and
paddings = [(0,1),(1,2)]
and
pad_value = 0
then we get
Out = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
8 years ago
)DOC");
AddAttr<std::vector<int>>(
"paddings",
"A pair list to describes padding rules for each dimension."
" For 2-D image tensor, paddings=[(0, 1), (2, 3)] means"
" padding 0 row to top, 1 row to bottom, 2 columns to left"
" and 3 columns to right.Paddings size should be equal to"
" dimension size of input tensor.");
AddAttr<float>("pad_value",
"(float) default to 0; "
"The value to be padded into tensor. ")
8 years ago
.SetDefault(0.0f);
}
};
class PadOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
x_grad->Resize(x_dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(pad, ops::PadOp, ops::PadOpMaker, pad_grad, ops::PadOpGrad);
REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pad_grad,
ops::PadGradKernel<paddle::platform::CPUPlace, float>);