You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/doc/fluid/dev/api_doc_std_cn.md

221 lines
5.5 KiB

7 years ago
# API注释撰写标准
- [API注释模块](#API注释模块)
- [格式及示例](#格式及示例)
- [完整示例](#完整示例)
## API注释模块
API文档须包含以下几个模块排列顺序为文档撰写顺序
- Python API Definition
API的代码定义。
- Function Description
API的功能描述。描述该API的含义、作用或对输入所做的操作及参考文献和对应链接如果有必要时给出公式并解释公式中关键变量的含义。
- Args Description
API参数介绍。按代码定义中的参数顺序逐个介绍介绍内容包含数据类型、默认值如果有、含义等。
- Returns
API返回值介绍。介绍返回值含义必要时给出对应的形状。若返回值为包含多个参数的tuple则按顺序逐个介绍各参数。
- Raises如果有
可能抛出的异常或错误及可能的产生原因,当可能抛出多种异常或错误时应分条列出。
- Note如果有
注意事项。当有多条注意事项时,应分条列出。
- Examples
API的使用示例。
## 格式及示例
API文档须使用reStructuredText格式撰写该格式详情请参考[链接](http://sphinx-doc-zh.readthedocs.io/en/latest/rest.html)。API文档各模块的内容格式及示例如下以下以fc为例进行说明
7 years ago
- Python API Definition
- 格式:
7 years ago
[Python API Definition]
7 years ago
- 示例
7 years ago
```
fc(input,
size,
num_flatten_dims=1,
param_attr=None,
bias_attr=None,
act=None,
name=None,
main_program=None,
startup_program=None)
```
- Function Description
7 years ago
- 格式
本模块应包含以下内容(排列顺序为文档撰写顺序):
[Function Description]
7 years ago
[Formula]
7 years ago
[Symbols' Descriptions if necessary]
7 years ago
[References if necessary]
7 years ago
- 示例
[Function Description]
```
**Fully Connected Layer**
The fully connected layer can take multiple tensors as its inputs. It
creates a variable called weights for each input tensor, which represents
a fully connected weight matrix from each input unit to each output unit.
The fully connected layer multiplies each input tensor with its coresponding
weight to produce an output Tensor. If multiple input tensors are given,
the results of multiple multiplications will be sumed up. If bias_attr is
not None, a bias variable will be created and added to the output. Finally,
if activation is not None, it will be applied to the output as well.
```
[Formula]
```
This process can be formulated as follows:
.. math::
Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
```
[Symbols' Descriptions if necessary]
```
In the above equation:
* :math:`N`: Number of the input.
* :math:`X_i`: The input tensor.
* :math:`W`: The weights created by this layer.
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Out`: The output tensor.
```
[References if necessary]
因fc没有必要列出的参考文献故该内容省略。其他情况下需明确给出对应的参考文献和对应连接以 layer_norm 为例:
7 years ago
```
Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_ for more details.
```
7 years ago
- Args Description
7 years ago
- 格式
7 years ago
\[Arg's Name\][(Data Type, Default Value)][Description]
7 years ago
- 示例
fc的部分参数注释如下
```
Args:
input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
the input tensor(s) is at least 2.
7 years ago
param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
parameters/weights of this layer.
name (str, default None): The name of this layer.
```
- Returns
7 years ago
- 格式
7 years ago
[Name][Shape]
7 years ago
- 示例
7 years ago
```
Returns:
A tensor variable storing the transformation result.
```
7 years ago
当返回值为包含多个参数的tuple时应按顺序逐个介绍各参数以dynamic_lstm为例
7 years ago
```
Returns:
A tuple containing:
The hidden state of LSTM whose shape is (T X D).
The cell state of LSTM whose shape is (T X D).
```
7 years ago
- Raises
- 格式
7 years ago
[Exception Type][Condition]
- 示例
7 years ago
```
Raises:
ValueError: If the rank of the input is less than 2.
```
- Note
- 格式
7 years ago
[Note]
- 示例
fc没有注意事项故该模块省略不写。如有注意事项应明确给出当有多条注意事项须分条列出以scaled\_dot\_product\_attention为例
7 years ago
```
Note:
1. When num_heads > 1, three linear projections are learned respectively
to map input queries, keys and values into queries', keys' and values'.
queries', keys' and values' have the same shapes with queries, keys
and values.
2. When num_heads == 1, scaled_dot_product_attention has no learnable
parameters.
```
7 years ago
- Examples
- 格式
\[Python Code Snipper]
7 years ago
- 示例
7 years ago
```
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
```
## 完整示例
fc 的完整注释见[示例](src/fc.py)。