You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
367 lines
16 KiB
367 lines
16 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/fluid/operators/fusion_lstm_op.h"
|
||
|
#include <string>
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||
|
"Input(Input) of LSTM should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Weight"),
|
||
|
"Input(Weight) of LSTM should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Bias"),
|
||
|
"Input(Bias) of LSTM should not be null.");
|
||
|
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
|
||
|
"Output(Hidden) of LSTM should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
|
||
|
"Output(Cell) of LSTM should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
|
||
|
"Output(BatchGate) of LSTM should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
|
||
|
"Output(BatchGate) of LSTM should not be null.");
|
||
|
|
||
|
auto in_dims = ctx->GetInputDim("Input");
|
||
|
PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
|
||
|
|
||
|
if (ctx->HasInput("H0")) {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("C0"),
|
||
|
"Input(Cell) and Input(Hidden) of LSTM should not "
|
||
|
"be null at the same time.");
|
||
|
auto h_dims = ctx->GetInputDim("H0");
|
||
|
auto c_dims = ctx->GetInputDim("C0");
|
||
|
PADDLE_ENFORCE(h_dims == c_dims,
|
||
|
"The dimension of Input(H0) and Input(C0) "
|
||
|
"should be the same.");
|
||
|
}
|
||
|
|
||
|
int frame_size = in_dims[1] / 4;
|
||
|
auto w_dims = ctx->GetInputDim("Weight");
|
||
|
PADDLE_ENFORCE_EQ(w_dims.size(), 2, "The rank of Input(Weight) should be 2.");
|
||
|
PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
|
||
|
"The first dimension of Input(Weight) "
|
||
|
"should be %d.",
|
||
|
frame_size);
|
||
|
PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
|
||
|
"The second dimension of Input(Weight) "
|
||
|
"should be 4 * %d.",
|
||
|
frame_size);
|
||
|
|
||
|
auto b_dims = ctx->GetInputDim("Bias");
|
||
|
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
|
||
|
PADDLE_ENFORCE_EQ(b_dims[0], 1,
|
||
|
"The first dimension of Input(Bias) should be 1.");
|
||
|
|
||
|
if (ctx->Attrs().Get<bool>("use_peepholes")) {
|
||
|
PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
|
||
|
"The second dimension of Input(Bias) should be "
|
||
|
"7 * %d if enable peepholes connection",
|
||
|
frame_size);
|
||
|
} else {
|
||
|
PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
|
||
|
"The second dimension of Input(Bias) should be "
|
||
|
"4 * %d if disable peepholes connection",
|
||
|
frame_size);
|
||
|
}
|
||
|
|
||
|
framework::DDim out_dims({in_dims[0], frame_size});
|
||
|
ctx->SetOutputDim("Hidden", out_dims);
|
||
|
ctx->SetOutputDim("Cell", out_dims);
|
||
|
ctx->SetOutputDim("BatchGate", in_dims);
|
||
|
ctx->SetOutputDim("BatchCellPreAct", out_dims);
|
||
|
ctx->ShareLoD("Input", "Hidden");
|
||
|
ctx->ShareLoD("Input", "Cell");
|
||
|
}
|
||
|
|
||
|
framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
|
||
|
const framework::ExecutionContext& ctx) const {
|
||
|
return framework::OpKernelType(
|
||
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
|
||
|
ctx.device_context());
|
||
|
}
|
||
|
|
||
|
void FusionLSTMOpMaker::Make() {
|
||
|
AddInput("Input",
|
||
|
"(LoDTensor) the first input is a LodTensor, which support "
|
||
|
"variable-time length input sequence. The underlying tensor in "
|
||
|
"this LoDTensor is a matrix with shape (T X 4D), where T is the "
|
||
|
"total time steps in this mini-batch, D is the hidden size.");
|
||
|
AddInput("H0",
|
||
|
"(Tensor, optional) the initial hidden state is an optional "
|
||
|
"input. This is a tensor with shape (N x D), where N is the "
|
||
|
"batch size and D is the hidden size.")
|
||
|
.AsDispensable();
|
||
|
AddInput("C0",
|
||
|
"(Tensor, optional) the initial cell state is an optional "
|
||
|
"input. This is a tensor with shape (N x D), where N is the "
|
||
|
"batch size. `H0` and `C0` can be NULL but only at the same time.")
|
||
|
.AsDispensable();
|
||
|
AddInput("Weight",
|
||
|
"(Tensor) the learnable hidden-hidden weights."
|
||
|
" - The shape is (D x 4D), where D is the hidden size. "
|
||
|
" - Weight = {W_ch, W_ih, W_fh, W_oh}");
|
||
|
AddInput("Bias",
|
||
|
"(Tensor) the learnable weights, which contains two parts: "
|
||
|
"input-hidden bias weight and peephole connections weight if "
|
||
|
"setting `use_peepholes` True. "
|
||
|
"1. `use_peepholes = False` "
|
||
|
" - The shape is (1 x 4D). "
|
||
|
" - Bias = {b_c, b_i, b_f, b_o}."
|
||
|
"2. `use_peepholes = True` "
|
||
|
" - The shape is (1 x 7D). "
|
||
|
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
|
||
|
AddOutput("Hidden",
|
||
|
"(LoDTensor) the hidden state of LSTM operator. "
|
||
|
"The shape is (T x D), and lod is the same with the `Input`.");
|
||
|
AddOutput("Cell",
|
||
|
"(LoDTensor) the cell state of LSTM operator. "
|
||
|
"The shape is (T x D), and lod is the same with the `Input`.");
|
||
|
AddOutput("BatchGate",
|
||
|
"(LoDTensor) This LoDTensor contains input gate, forget gate "
|
||
|
"and output gate after the nonlinear computation. This "
|
||
|
"LoDTensor has the same shape as the reorganized input, which "
|
||
|
"is also be called batch input. The LoD size is 2. The first "
|
||
|
"LoD is the batch offsets and the second LoD contains the "
|
||
|
"indexes, which denote the position of reorganized sequence "
|
||
|
"in the raw input.")
|
||
|
.AsIntermediate();
|
||
|
AddOutput("BatchCellPreAct",
|
||
|
"(LoDTensor) This LoDTensor is obtained in the forward and used "
|
||
|
"in the backward.")
|
||
|
.AsIntermediate();
|
||
|
AddAttr<bool>("use_peepholes",
|
||
|
"(bool, defalut: True) "
|
||
|
"whether to enable diagonal/peephole connections.")
|
||
|
.SetDefault(true);
|
||
|
AddAttr<bool>("is_reverse",
|
||
|
"(bool, defalut: False) "
|
||
|
"whether to compute reversed LSTM.")
|
||
|
.SetDefault(false);
|
||
|
AddAttr<std::string>("gate_activation",
|
||
|
"(string, default: sigmoid)"
|
||
|
"The activation for input gate, forget gate and output "
|
||
|
"gate, `sigmoid` by default.")
|
||
|
.SetDefault("sigmoid")
|
||
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
||
|
AddAttr<std::string>("cell_activation",
|
||
|
"(string, default: tanh)"
|
||
|
"The activation for cell output, `tanh` by defalut.")
|
||
|
.SetDefault("tanh")
|
||
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
||
|
AddAttr<std::string>("candidate_activation",
|
||
|
"(string, default: tanh)"
|
||
|
"The activation for candidate hidden state, "
|
||
|
"`tanh` by default.")
|
||
|
.SetDefault("tanh")
|
||
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
||
|
AddComment(R"DOC(
|
||
|
Long-Short Term Memory (LSTM) Operator.
|
||
|
|
||
|
The defalut implementation is diagonal/peephole connection
|
||
|
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
|
||
|
|
||
|
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$
|
||
|
|
||
|
$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) $$
|
||
|
|
||
|
$$ \\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) $$
|
||
|
|
||
|
$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) $$
|
||
|
|
||
|
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$
|
||
|
|
||
|
$$ h_t = o_t \\odot act_h(c_t) $$
|
||
|
|
||
|
- W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
|
||
|
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
|
||
|
are diagonal weight matrices for peephole connections. In our implementation,
|
||
|
we use vectors to reprenset these diagonal weight matrices.
|
||
|
- The b terms denote bias vectors ($b_i$ is the input gate bias vector).
|
||
|
- $\sigma$ is the non-line activations, such as logistic sigmoid function.
|
||
|
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
|
||
|
and cell activation vectors, respectively, all of which have the same size as
|
||
|
the cell output activation vector $h$.
|
||
|
- The $\odot$ is the element-wise product of the vectors.
|
||
|
- $act_g$ and $act_h$ are the cell input and cell output activation functions
|
||
|
and `tanh` is usually used for them.
|
||
|
- $\tilde{c_t}$ is also called candidate hidden state,
|
||
|
which is computed based on the current input and the previous hidden state.
|
||
|
|
||
|
Set `use_peepholes` False to disable peephole connection. The formula
|
||
|
is omitted here, please refer to the paper
|
||
|
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
|
||
|
|
||
|
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
|
||
|
operations on the input $x_{t}$ are NOT included in this operator.
|
||
|
Users can choose to use fully-connect operator before LSTM operator.
|
||
|
|
||
|
)DOC");
|
||
|
}
|
||
|
|
||
|
template <typename DeviceContext, typename T>
|
||
|
inline void ReorderInitState(const DeviceContext& ctx,
|
||
|
const framework::Tensor& src,
|
||
|
framework::Vector<size_t> index_lod,
|
||
|
framework::Tensor* dst, bool indexed_src) {
|
||
|
math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
|
||
|
dst->mutable_data<T>(src.dims(), ctx.GetPlace());
|
||
|
row_shuffle(ctx, src, index_lod, dst, indexed_src);
|
||
|
}
|
||
|
|
||
|
template <typename DeviceContext, typename T>
|
||
|
class LSTMKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto* input = ctx.Input<LoDTensor>("Input");
|
||
|
auto* weight = ctx.Input<Tensor>("Weight");
|
||
|
auto* bias = ctx.Input<Tensor>("Bias");
|
||
|
|
||
|
auto* hidden_t0 = ctx.Input<Tensor>("H0");
|
||
|
auto* cell_t0 = ctx.Input<Tensor>("C0");
|
||
|
|
||
|
auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
|
||
|
batch_gate->mutable_data<T>(ctx.GetPlace());
|
||
|
auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
|
||
|
hidden_out->mutable_data<T>(ctx.GetPlace());
|
||
|
auto* cell_out = ctx.Output<LoDTensor>("Cell");
|
||
|
cell_out->mutable_data<T>(ctx.GetPlace());
|
||
|
|
||
|
bool is_reverse = ctx.Attr<bool>("is_reverse");
|
||
|
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
|
||
|
auto& device_ctx = ctx.template device_context<DeviceContext>();
|
||
|
to_batch(device_ctx, *input, batch_gate, true, is_reverse);
|
||
|
|
||
|
auto in_dims = input->dims();
|
||
|
int frame_size = static_cast<int>(in_dims[1] / 4);
|
||
|
framework::DDim dims({in_dims[0], frame_size});
|
||
|
|
||
|
if (bias) {
|
||
|
Tensor b = *bias;
|
||
|
b.Resize({bias->numel(), 1});
|
||
|
Tensor gate_bias = b.Slice(0, 4 * frame_size);
|
||
|
math::RowwiseAdd<DeviceContext, T> add_bias;
|
||
|
add_bias(device_ctx, *batch_gate, gate_bias, batch_gate);
|
||
|
}
|
||
|
|
||
|
math::LstmMetaValue<T> lstm_value;
|
||
|
if (bias && ctx.Attr<bool>("use_peepholes")) {
|
||
|
T* bias_data = const_cast<T*>(bias->data<T>());
|
||
|
// the code style in LstmMetaValue will be updated later.
|
||
|
|
||
|
lstm_value.check_ig = bias_data + 4 * frame_size;
|
||
|
lstm_value.check_fg = lstm_value.check_ig + frame_size;
|
||
|
lstm_value.check_og = lstm_value.check_fg + frame_size;
|
||
|
} else {
|
||
|
lstm_value.check_ig = nullptr;
|
||
|
lstm_value.check_fg = nullptr;
|
||
|
lstm_value.check_og = nullptr;
|
||
|
}
|
||
|
lstm_value.prev_state_value = nullptr;
|
||
|
Tensor ordered_c0;
|
||
|
|
||
|
framework::Vector<size_t> order(batch_gate->lod()[2]);
|
||
|
|
||
|
if (cell_t0) {
|
||
|
// Since the batch computing for LSTM reorders the input sequence
|
||
|
// according to their length. The initialized cell state also needs
|
||
|
// to reorder.
|
||
|
ReorderInitState<DeviceContext, T>(device_ctx, *cell_t0, order,
|
||
|
&ordered_c0, true);
|
||
|
lstm_value.prev_state_value = ordered_c0.data<T>();
|
||
|
}
|
||
|
|
||
|
// Use the local variable as here.
|
||
|
LoDTensor batch_hidden, batch_cell;
|
||
|
auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
|
||
|
batch_hidden.mutable_data<T>(dims, ctx.GetPlace());
|
||
|
batch_cell.mutable_data<T>(dims, ctx.GetPlace());
|
||
|
batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());
|
||
|
|
||
|
auto batch_starts = batch_gate->lod()[0];
|
||
|
size_t num_batch = batch_starts.size() - 1;
|
||
|
auto gate_act = math::detail::GetActivationType(
|
||
|
ctx.Attr<std::string>("gate_activation"));
|
||
|
auto cell_act = math::detail::GetActivationType(
|
||
|
ctx.Attr<std::string>("cell_activation"));
|
||
|
auto cand_act = math::detail::GetActivationType(
|
||
|
ctx.Attr<std::string>("candidate_activation"));
|
||
|
|
||
|
auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
|
||
|
for (size_t n = 0; n < num_batch; n++) {
|
||
|
int bstart = static_cast<int>(batch_starts[n]);
|
||
|
int bend = static_cast<int>(batch_starts[n + 1]);
|
||
|
|
||
|
Tensor gate_t = batch_gate->Slice(bstart, bend);
|
||
|
Tensor out_t = batch_hidden.Slice(bstart, bend);
|
||
|
Tensor cell_t = batch_cell.Slice(bstart, bend);
|
||
|
Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);
|
||
|
|
||
|
int cur_batch_size = bend - bstart;
|
||
|
|
||
|
if (n > 0) {
|
||
|
int pre_h_start = static_cast<int>(batch_starts[n - 1]);
|
||
|
int pre_h_end = pre_h_start + cur_batch_size;
|
||
|
auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
|
||
|
blas.MatMul(pre_hidden_t, false, *weight, false, static_cast<T>(1.0),
|
||
|
&gate_t, static_cast<T>(1.0));
|
||
|
} else if (hidden_t0) {
|
||
|
// If n == 0 and there is no initialized hidden state, that is to say
|
||
|
// the H0 is zeros, the calculation W_h * H0 will be skiped.
|
||
|
// If n == 0 and there is initialized hidden state, calculate W_h * H0.
|
||
|
|
||
|
// Since the batch computing for LSTM reorders the input sequence
|
||
|
// according to their length. The initialized hidden state also needs
|
||
|
// to reorder.
|
||
|
Tensor ordered_h0;
|
||
|
ReorderInitState<DeviceContext, T>(device_ctx, *hidden_t0, order,
|
||
|
&ordered_h0, true);
|
||
|
blas.MatMul(ordered_h0, false, *weight, false, static_cast<T>(1.0),
|
||
|
&gate_t, static_cast<T>(1.0));
|
||
|
}
|
||
|
|
||
|
lstm_value.gate_value = gate_t.data<T>();
|
||
|
lstm_value.output_value = out_t.data<T>();
|
||
|
lstm_value.state_value = cell_t.data<T>();
|
||
|
lstm_value.state_active_value = cell_pre_act_t.data<T>();
|
||
|
math::LstmUnitFunctor<DeviceContext, T>::compute(
|
||
|
device_ctx, lstm_value, frame_size, cur_batch_size, gate_act,
|
||
|
cell_act, cand_act);
|
||
|
lstm_value.prev_state_value = lstm_value.state_value;
|
||
|
}
|
||
|
|
||
|
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
|
||
|
batch_hidden.set_lod(batch_gate->lod());
|
||
|
// restore the output hidden in LoDTensor from the batch hidden
|
||
|
to_seq(device_ctx, batch_hidden, hidden_out);
|
||
|
|
||
|
batch_cell.set_lod(batch_gate->lod());
|
||
|
// restore the output cell state in LoDTensor from the batch cell
|
||
|
to_seq(device_ctx, batch_cell, cell_out);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker,
|
||
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
||
|
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
fusion_lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::LSTMKernel<paddle::platform::CPUDeviceContext, double>);
|